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The London equation is a linear relation j = −DsA in a superconductor between the
electrical current density j and the vector potential A in the gauge divA = 0. The propor-
tionality coefficient Ds is called the superfluid weight. At zero temperature, for a parabolic
band with effective massmeff, the superfluid weight equals Ds

0 = e2ñ/meff, with ñ the number
density of conduction electrons. The superfluid weight governs the electromagnetic proper-
ties of superconductors, notably the Meissner effect.

In a two-dimensional (2D) system, the product (ℏ/e)2Ds has dimension of energy. For
2D free electrons this is the Fermi energy EF = ℏ2k2

F/2meff = π(ℏ/e)2Ds
0. While the super-

conducting gap ∆0 sets the temperature scale at which Ds vanishes, the low temperature
value of the superfluid weight is independent of the pairing interaction.

Fig. 1. Calculated band structure of twisted bilayer

graphene at θ = 1.08◦. The right panel zooms in on the

flat band, the red dots indicate the two Dirac points.

(From Tian et al.)

All of this assumes that ∆0 ≪ EF. In
the flat-band limit meff → ∞ the Fermi
energy vanishes, but the superfluid weight
may retain a nonzero value, set by the pair-
ing interaction. What is needed is that the
energy band is flat (dispersionless) because
of destructive interference of wave functions
extended over many sites, rather than be-
cause of on-site localization. The vector po-
tential changes the interference pattern, al-
lowing for a nonzero supercurrent. An in-
teger invariant of the flat band, the Chern
number, provides a lower bound for the su-
perfluid weight — a remarkable finding by
Peotta and Törmä. Because the Chern num-
ber is a geometric property of quantum states one says that “flat band superconductivity is
enabled by quantum geometry”. The paper by Tian et al. reports evidence for this effect.
Let me walk you through it.
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The 2D flat band material is a pair of graphene monolayers, stacked with a small angular
mismatch θ. The low-energy excitations of this twisted graphene bilayer are massless Dirac
fermions, as in the monolayer, but the Fermi velocity is much smaller. A dispersionless band
appears near a “magic” twist angle around 1◦. The band structure at θ = 1.08◦ is shown in
Fig. 1. The flat band near the Fermi energy has a width of about 1 meV. In the experiment
an average v̄ of the carrier velocity over the flat band is measured from the nonlinear current-
voltage characteristic in the normal state: the differential resistance dV/dI has a peak when
I = ev̄ñ. The resulting v̄ ≈ 103m/s is close to the slope of the dispersion at the Dirac points
in Fig. 1. Note that this value is one thousand times as small as in the graphene monolayer.

As discovered by Jarillo-Herrero and his group, magic-angle twisted bilayer graphene
becomes superconducting at temperatures below 2 K (see the April 2018 Journal Club issue).
The critical supercurrent jc is reached at A = (ℏ/2e)ξ−1. The superconducting coherent
length ξ is related to the upper critical magnetic field Bc2 via Bc2ξ

2 = ℏ/2e. Measurements
of jc and Bc2 thus allow determination of the superfluid weight,

Ds =
2e

ℏ
ξjc =

√
2e

ℏBc2

jc. (1)

Fig. 2. Red curve: Density dependence of the su-

perfluid weight, calculated using Eq. (1) from the

measured critical current density and upper critical

magnetic field. The black line is the London value

Ds
0 = e2ñ/meff, with meff = (ℏ/v̄)

√
2πñ. The green

curve is the estimate Ds = c(e/ℏ)2∆0, with fit param-

eter c = 0.33.(From Tian et al.)

The resulting density dependence of Ds

is shown in Fig. 2 (red curve). The black
and green curves would result, respectively,
by identifying (ℏ/e)2Ds with the Fermi en-
ergy EF or the superconducting gap ∆0. It is
evident from the comparison that the super-
fluid weight of the twisted graphene bilayer
is governed not by the kinetic energy but by
the pairing interaction. How does this sup-
port the claim of “superconductivity enabled
by quantum geometry”?

In the theory of flat band superconduc-
tivity (reviewed recently by Törmä, Peotta,
and Bernevig) one distinguishes intraband
from interband contributions to the super-
current. The distinction refers to diagonal
and off-diagonal matrix elements of the ve-
locity operator v = ∂H/∂k in the basis of
single-particle Bloch states,

H(k)|m,k⟩ = εm(k)|m,k⟩ ⇒ (2)

⟨m|v|n⟩ = δnm∂kεn + (εn − εm) ⟨m |∂k|n⟩ .

The interband (n ̸= m) contributions are
called “geometric” because ⟨m|∂k|n⟩ can be
used to quantify the distance of two eigen-
states in the Brillouin zone.

2

https://doi.org/10.36471/JCCM_April_2018_03
https://doi.org/10.48550/arXiv.2111.00807
https://doi.org/10.48550/arXiv.2111.00807


Fig. 3. Dependence of the superfluid weight on the

gap ∆0, calculated for twisted bilayer graphene at θ =

1.05◦. The conventional contribution is insensitive to

∆0, while the geometric contribution increases with

increasing ∆0. (From Hu et al.)

In a completely dispersionless band there
are no conventional, intraband contributions
to the superfluid weight. Only the geomet-
ric, interband contributions remain. In the
experiment the superconducting gap ∆0 in
the range 0.1–0.4meV is smaller than the
band width W ≈ 1meV, so both classes of
contributions are present. Still, a calculation
by Hu, Hyart, Pikulin, and Rossi (see Fig.
3) indicates that the geometric contribution
dominates when ∆0 exceeds 10% of the band
width, which applies to the experiment.
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