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Oddness in the spin-S Kitaev honeycomb
model
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The S = 1/2 Kitaev honeycomb model [1]

H = J
∑
⟨j,k⟩

JµS
µ
j S

µ
k , (1)

where µ = x, y, z depending on the direction of the nearest-neighbor bond between sites
j and k on the honeycomb lattice, is a fascinating example of exactly solvable quantum
many-body systems, demonstrating the existence of nontrivial quantum spin liquids as the
ground state of the Hamiltonian with only the nearest-neighbor bilinear spin-spin interaction.
Furthermore, possible experimental realization of the “Kitaev spin liquid” is one of the most
active topics in quantum magnetism in recent years [2, 3]. Given these circumstances, it
is natural to study Kitaev honeycomb model with S ≥ 1, which also has several material
candidates [4, 5]. Unfortunately, the Kitaev honeycomb model is exactly solvable only for
S = 1/2. Nevertheless, thanks to numerous works, in particular the earlier work [6] and the
highlighted papers, we now have some insights including the important difference between
half-integer and integer spin S.

First let us quickly review why the S = 1/2 Kitaev honeycomb model is exactly solv-
able. Kitaev introduced a representation of a single S = 1/2 spin in terms of 4 Majorana
fermions γ0,x,y,z, so that each of the spin operator is written as a bilinear of Majorana
fermions as Sµ = i

2
γ0γµ, where µ = x, y, z. The Hilbert space of 4 Majorana fermions,

or equivalently 2 complex fermions, is 4-dimensional. Nevertheless, by imposing a parity
condition γ0γxγyγz = 1, the dimension of the “physical subspace” is reduced to 2, matching
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the Hilbert space of S = 1/2. The bilinear spin-spin interaction Sµ
j S

µ
k is thus written as a

4-fermion term −γ0
j γ

µ
j γ

µ
k γ

0
k/4. The Hamiltonian, given as a sum of these 4-fermion terms, is

apparently not exactly solvable. However, ujk = γµ
j γ

µ
k = ±1 can be regarded as a Z2 gauge

field. Furthermore, since ujk commute with each other and with the Hamiltonian, we can
diagonalize the Hamiltonian within each sector corresponding to a fixed configuration of the
Z2 gauge field ujk. In fact, each sector is characterized by the Z2 gauge flux Wp through
each plaquette p, which is the product of ujk along the plaquette p. Thus the Hamiltonian
is reduced to a sum of fermion bilinears, which is exactly solvable.

Interestingly, some of the features of the S = 1/2 Kitaev honeycomb model are inherited
by the Kitaev honeycomb model with S ≥ 1. That is, the Z2 gauge flux Wp, defined as the
product of eiπS

µ
on the plaquette p, commutes with each other and with the Hamiltonian [6].

On the other hand, tensor-network wavefunctions, which may be regarded as variational
ground states of the Kitaev honeycomb model, imply that the phase diagram for S = 1
Kitaev honeycomb model is rather different from S = 1/2 [7]. That is, at the isotropic point
Jx = Jy = Jz, the ground state of the S = 1 model is a gapped Z2 spin liquid, unlike the
gapless spin liquid at the isotropic point of the S = 1/2 model. Moreover, in the anisotropic
limit Jx, Jy → 0, the ground state of the S = 1 model is trivial. Furthermore, as shown in the
highlighted paper 1, the tensor-network picture suggests that the spin-S Kitaev honeycomb
model may be classified into two classes: half-integer S and integer S.

The common feature of the Kitaev honeycomb model for all S and the difference between
half-integer and integer S were further elucidated in the highlighted paper 2, where Kitaev’s
Majorana fermion representation is generalized to general spin quantum number S. That
is, we can introduce 2S flavors of Majorana fermions γ0,x,y,z

a (a = 1, 2, . . . , 2S) at each
site, to represent spin operators as Sµ = i

2

∑2S
a=1 γ

0
aγ

µ
a , with the constraints γ0

aγ
x
aγ

y
aγ

z
a = 1

for a = 1, 2, . . . , 2S and
∑

µ (
∑

a γ
0γµ

a )
2
= −4S(S + 1). The Z2 gauge structure becomes

manifest by introducing “giant parton” operators

Γα ≡ iS(2S−1)

2S∏
a=1

γα
a . (2)

In terms of the giant partons, the Z2 gauge field on each link is given as ujk = Γµ
jΓ

µ
k , from

which the Z2 flux Wp can be constructed. Similarly to the S = 1/2 case, ujk on any link
commute with each other, and also with the Hamiltonian. Therefore we can again fix the
gauge field configuration first. However, this does not reduce the Hamiltonian to fermion
bilinears for S ≥ 1, resulting in the loss of the exact solvability.

We can also construct a “string operator” by the product of the giant parton operators
along a path. The string operator contains the product of the Z2 gauge field along the path
and the Z2-charged operator Γ0 at the ends of the path. Since the gauge field part of the
string operator commutes with the Hamiltonian, creation of two Z2 charged excitation by
application of the string operator costs only a constant energy coming from the ends which
does not grow with the length of the string. This seems to imply a deconfinement of the Z2

charge, signaling a nontrivial spin liquid phase. However, a trivial phase is also possible if
Γ0 condenses. Here, the crucial difference between half-integer and integer S arises: being
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a product of 2S Majorana fermions, the giant parton operator Γ0 is fermionic when S is a
half-integer while Γ0 is bosonic when S is an integer. Therefore, the trivial phase due to the
condensation of Γ0 seems only possible for an integer S. This is indeed consistent with the
observation in the highlighted paper 1.

The observed even-odd effect certainly reminds us of the now established “Haldane con-
jecture” [8]. Although initially it appeared rather mysterious and was believed by few,
now it is understood as a manifestation of a more general principle, filling-enforced or Lieb-
Schultz-Mattis (LSM) type constraint [9, 10, 11, 12]. It is tempting to consider the difference
between half-integer and integer S in the Kitaev honeycomb model as a consequence of the
LSM-type constraint. Although the Kitaev honeycomb model lacks the continuous SU(2)
or even U(1) symmetry, recent developments have shown that the discrete dihedral group
symmetry, which is present in the Kitaev honeycomb model, can lead to a LSM-type con-
straint [13, 14, 15, 16]. Indeed, as shown in the highlighted paper 1, in the anisotropic limit
Jz ≫ Jx, Jy, the effective model of the Kitaev honeycomb model with a half-integer S is
reduced to a S = 1/2 model on a square lattice, which must have a nontrivial ground state
because of the LSM constraint. However, except for the anisotropic limit, there is no known
LSM-type constraint for the Kitaev honeycomb model even when S is a half-integer. This
is essentially because the unit cell (or the fundamental domain) of the honeycomb lattice
contains two sites, so that the “total spin” of the fundamental domain is integer. Thus the
observed difference between half-integer and integer S in the Kitaev honeycomb model is
still a mystery from a general viewpoint.

It is an interesting question if there is a universal mechanism similar to the LSM-type
constraint which excludes a trivial ground state of the Kitaev honeycomb model with a half-
integer S. Or, is it actually possible to realize a trivial ground state of the Kitaev honeycomb
model (or its deformation respecting all the symmetries) with a half-integer S, going beyond
the validity of Ma’s argument? I would like to note that, although it is allowed by LSM
constraints, it was rather challenging to realize a trivial ground state on the honeycomb
lattice at “half filling” in the presence of the U(1) symmetry. Eventually, however, it turned
out that a trivial ground state is indeed possible, as demonstrated in Ref. [17]. Therefore,
in order to rule out a trivial ground state on the honeycomb lattice for half-integer S,
probably we have to impose an extra symmetry or a condition which is satisfied by the
Kitaev honeycomb model. In any case, it would be interesting to continue investigation of
the Kitaev honeycomb and related models with general spin quantum number S, with the
perspectives provided by the highlighted papers.

I acknowledge the Kavli Institute for Theoretical Physics (UC Santa Barbara) program
“A New Spin on Quantum Magnets” (supported in part by the National Science Founda-
tion under Grants NSF PHY-1748958 and PHY-2309135) for the opportunity to learn the
developments discussed in this commentary.
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