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The possibility of liquid-like ground states in triangular-lattice magnets has attracted
attention at least since the work of Anderson fifty years ago, which introduced the concept
of a spin liquid and argued that one might exist deep within the Mott-insulating phase of the
Hubbard model on this lattice. While later work is generally accepted to have shown that
the actual state deep in that phase has long-ranged three-sublattice order, new materials and
theoretical studies have clarified where the long-sought triangular lattice spin liquid–indeed,
several distinct kinds of such liquids–might be found. The theoretical paper by Wietek,
Capponi, and Läuchli [1] that is cited in the header is an example of ongoing efforts to
understand how the signatures of one kind, the U(1) Dirac quantum spin liquid, can be
detected in real and numerical experiments. This question is highly topical in light of recent
experiments, chiefly using inelastic neutron scattering, on a number of Yb-based triangular
lattice compounds; four examples are Refs. [2–5], which are believed to have lower levels
of chemical disorder than revealed in earlier Yb materials [6]. Another observation is spin
specific heat that scales with the square of temperature at low temperature [5], consistent
with expectations for independent Dirac spinons. As work has continued on spin liquids more
or less unabated for decades, it is impossible in a brief article to give a full and fair perspective,
and readers may wish to consult longer treatments for background. The focus here will be
on explaining why the fairly technical paper [1] is a timely step toward understanding how
the excitation content of this phase is visible in (numerical or real) experiments.

Anderson’s original resonating valence bond proposal would now be viewed as an example
of a Z2 spin liquid, which is a gapped topological phase that is known to appear in dimer
models on the triangular lattice [7]. Another kind of gapped topological spin liquid, the
chiral spin liquid, seems to appear in the Hubbard model close to the Mott transition, when
additional interactions beyond nearest-neighbor Heisenberg coupling destabilize the three-
sublattice order [8, 9]. The appearance of this state is believed to be driven primarily a
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four-spin coupling term [10], and yet another kind of spin liquid, with a Fermi surface of
spinons, appears when this coupling is further enhanced. As a feature of frustrated magnetic
models is that small changes in the Hamiltonian can lead to major changes in the ground
state, and the interactions in any given material and their anisotropies may be fairly far from
those in the Hubbard model, it is not too surprising that the spin liquid that is suggested
by most experiments on the new Yb-based compounds is none of these. Most experiments
have been interpreted in terms of nearest-neighbor J1 and second-neighbor J2 couplings, with
values that in some cases have been extracted from fits to the neutron scattering spectra at
high magnetic fields.

In the U(1) Dirac spin liquid, there is a gapless Dirac-like spectrum of spin excitations,
interacting through an emergent gauge field whose importance we return to momentarily.
Various computational and theoretical techniques have been applied to estimate where this
phase appears in phase diagrams and even how it should look in inelastic neutron scat-
tering experiments, which measure the dynamical spin structure factor S(q, ω). Methods
used include exact diagonalization of small systems, variational Monte Carlo based on trial
wavefunctions for the phase, density matrix renormalization group (DMRG), and analytical
methods like Schwinger-boson mean-field theory. One weakness of these methods is that
none of them is both unbiased and fully two-dimensional; DMRG, for example, is typically
carried out on cylinders that are very long in one direction but small in the other, with a
circumference of around six or eight spins, meaning that estimating S(q, ω) involves both an
interpolation in q and an extrapolation to the thermodynamic limit. Considerable compu-
tational effort has been devoted to the phase diagram of the J1−J2 model on the triangular
lattice, which appears to support some kind of spin liquid phase for an intermediate range of
J2/J1, beginning at around 0.06-0.08 in the isotropic case, and in modeling S(q, ω) in that
phase.

Another weakness of current theory, which the paper by Wietek et al. begins to address,
is that just staring at either experimental or numerical spectra does not reveal much of the
exciting gauge physics that this phase is expected to contain. In addition to the gapless
spin excitations, there should be an emergent dynamical U(1) gauge field so that the overall
theory is a form of three-dimensional electrodynamics (QED3). Note that in a 2D material
with charged Dirac fermions like graphene, the electromagnetic field still lives in three spatial
dimensions. In the Dirac spin liquid, the spin excitations are neutral but still interact through
a kind of gauge field, and the existence of such emergent gauge fields in correlated matter
has been a holy grail since at least the early days of high-temperature superconductivity.
Soon after influential mean-field theories of the Hubbard model were developed by Affleck
and Marston, and Kotliar and Liu, it became clear that incorporating beyond-mean-field
corrections led to a kind of gauge field that is expected to acquire dynamics and have various
important effects on the observable low-energy properties of the state.

Similar analytic methods (see for example a series of papers by Michael Hermele and
collaborators for the U(1) case) yield many possiblities for spin liquids, on many different
lattices, with Abelian or non-Abelian emergent gauge fields. However, it remained difficult
to understand how the gauge field would affect microscopic spectra measured numerically
or experimentally–in other words, the differences between a simple model of Dirac spinons
with no interactions at low energy, versus the full theory with monopoles and other gauge
excitations, were somewhat unclear. An important step in clarifying the consequences of
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the gauge fields was the relatively recent identification of the quantum numbers of the key
excitations by Song et al. [11], which applied some of the considerable progress in recent
years in analyzing band structures to bands of spinons. The goal of the Wietek et al.
paper [1] is to compare the properties of different kinds of excitations in QED3 from a model
parton wavefunction, such as monopoles and fermion bilinears, with the spectrum from exact
diagonalization of the J1 − J2 Hamiltonian in the putative spin liquid regime.

The key results are captured in Figure 4, which shows that the “zoo” of low-lying exci-
tations from exact diagonalization of 36 sites can be recognized as excitations predicted by
QED3 because of their high overlap with different kinds of excitations in the model wavefunc-
tion obtained by Gutzwiller projection of partons. In their words, “We observe that almost
every eigenstate in the dense low-energy ED spectrum has significant overlap with only one
of the various excitation ansatz types.” A caveat mentioned by the authors is the possibil-
ity that QED3 only describes a quantum critical point in the model between conventional
and valence-bond-solid phases, rather than an extended phase. Either way, a challenge for
extending this study to larger systems and real experiments is that in exact diagonalization,
one has direct access to excited-state wavefunctions, while in neutron scattering spectra and
estimates of them using time-dependent DMRG, one instead probes the dynamics of observ-
ables. But if it is possible to extend this study and find distinct observable signatures of the
various kinds of excitations predicted by the gauge theory, then the rich physics of this type
of quantum spin liquid will finally be amenable to experimental characterization.

The author acknowledges the Kavli Institute for Theoretical Physics program “A New
Spin on Quantum Magnets” (supported in part by the National Science Foundation under
Grants NSF PHY-1748958 and PHY-2309135) for enabling discussions of the physics in this
commentary.
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