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Figure 1: Top A realistic beat pat-
tern of a cilium, and the simplified
bead model used in Hickey et al.
Bottom A two-dimensional carpet of
bead model cilia. Reproduced from
[1].

Non-reciprocal interactions have recently gar-
nered much attention in the soft (and active) mat-
ter community. A classic example are vision cone-
interactions, relevant to many social animals who use
sight to coordinate (birds, pedestrians, etc.). Such
agents can only react to neighbors in their field of vi-
sion, and agents are often not mutually visible to each
other. Non-reciprocity opens the door for new kinds
of pattern formation transitions [2], but Hickey et al.
study its effect in quickening, and stabilizing an exist-
ing order transition for coupled oscillators. What is
so striking here is the dramatic speed up - for two
dimensional systems, reaching global order hastens
from t ∝ N2 to

√
N . First, a brief introduction to

the biological inspiration.
Many eukaryotic cells are coated in cilia - mi-

croscopic hairs that beat the fluid around them by
cycling through a series of bending configurations.
Cilia are a key component of extra-cellular trans-
port systems, often acting as fluid pumps (for low
Reynolds number flows, hence the need for consid-
erable shape change in their stroke). Free swimming
cells such as members of genus Paramecium use many
cilia over their surface to self-propel, while our respi-
ratory tracts contain vast quantities of cilia to trans-
port mucus and expel debris. Individual cilium can
be thought of (and reasonably modeled) as oscillators with an intrinsic frequency and con-
stant driving power. Their beat cycle is split into two parts, a fast ‘power stroke’ and
slower recovery stroke. Cilia carpets are typically ordered arrays of many cilia, where the
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direction of the power stroke for all is fixed by an underlying polarity of the host cell or
tissue. Crucially, hydrodynamic coupling between nearby cilia can shift their frequencies
and synchronize them into wave states, known as ‘metachronal’ waves. Metachronal waves
are commonly observed, and generally enhance fluid transport. How do these synchronized
states emerge?

At first look, cilia carpets should seem to display the basic characteristics of a Kuramoto
model in two dimensions. This model admits plane wave solutions, with dominant contri-
bution k = 0. Furthermore, the slowest decaying perturbation mode is set by the longest
dimension of the system L, and the Lyapunov exponent of this mode can be shown to scale
as ∝ L2. Therefore, as the system size increases, perturbations will relax ever slower and
no synchronization is to be expected in the infinite system [3]. This is an expression of
the Hohenberg-Mermin-Wagner theorem that prohibits global order in two-dimensional sys-
tems with continuous symmetries and local coupling [4], also responsible for a lack of true
long-range order in the classical 2D XY model.

Figure 2: Time to synchronization for a
chain of bead model cilia. When near-field
effects (NFEs) and periodic boundary condi-
tions are used, synchronization is slow (pur-
ple curve). Note that NFE’s are responsible
for non-reciprocal effects in this model sys-
tem. Finite systems without NFEs only par-
tially synchronize (orange curve). Finite sys-
tems with NFEs globally synchronize rapidly
(grey curve). Reproduced from [1].

A combination of non-reciprocal inter-
actions and finite system size dramatically
alters this picture. Hickey et al. construct
a model of cilia carpets in which near-field
(and hence nonlinear) hydrodynamic effects
are included. When only far-field flows are
considered, coupling interactions between
cilia are reciprocal, due to the linear nature
of Stokesian dynamics and the Lorentz recip-
rocal theorem. To more fully model cilia car-
pets at realistic area densities, coupling due
to close-range non-linear flows must be con-
sidered, and these effects have pronounced
non-reciprocity. Hickey et al. refer to such
corrections as ‘near field effects’ (NFEs).

Non-reciprocal effects (from NFEs) have
apparently subtle consequences for the dy-
namics of synchronization in the bulk.
When an ordered patch randomly occurs, it
tends to migrate in the direction of greatest
non-reciprocity. Much like a tread-milling
filament [5] (that returning readers may re-
call [6]) the ordered patch synchronizes cilia
ahead of it, while disorder behind it con-
sumes it at a similar rate. Non-reciprocal
coupling is responsible - the ordered patch
exerts great influence over disordered cilia
ahead of it, and recruits them, but is power-

less to synchronize cilia behind. Consequentially, NFEs have little effect on the mean time to
synchronization in the absence of boundaries (fig. 2, purple curve). The time to synchronize
is dramatically shortened when boundaries and NFEs are present (fig. 2, grey curve). The
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reason is beautifully simple - ordered domains that begin near a boundary wall and grow
perpendicular to it do not have disordered neighbors behind them, and their ‘vulnerable’
side is protected by the system boundary. These edge-nucleated domains grow unchecked,
and span the system in time proportional to L. Introducing an edge boundary (of the correct
orientation!) to a large 2D system of N cilia could therefore reduce expected synchronization
time from ∝ N2 to a mere ∝

√
N . As Hickey et al. point out, this is relevant to biological

systems because fully periodic 2D cilia carpets are quite rare. Domains with edges, or with
curvature extreme enough to require lattice defects, are the norm.

Note also that reciprocal models of cilia in finite domains struggle to achieve global order,
instead becoming trapped in multi-domain or chimera states. Accordingly, synchronization
times appear to saturate for such models as the typical stable domain size is reached (fig. 2
orange curve), but this is just an indication of multi-domain synchronization. When modeled
with NFEs, domains rapidly converge to a single, stable metachronal wave solution. Prior
studies have shown that even in periodic domains, multiple solutions are stable [3], and open
boundaries complicate matters further. This work is another reminder that biological systems
are very finely tuned, and our understanding is just catching up. Nature has apparently
known about the advantages of non-reciprocal coupling for quite some time.

In summary, Hickey et al. present an interesting turn in our understanding of how cilia
carpets synchronize, but perhaps more exciting are extensions to the many other systems
that can be mapped to the Kuramoto model. Furthermore, one wonders how effectively
localized defects could play the part of domain boundaries here. Interesting to consider that
the emergence of order in the form of synchronization could be dramatically helped by a
breakdown of positional order.
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