Lieb-Schultz-Mattis Theorem for Open Quantum Systems

\author{

1. Lieb-Schultz-Mattis Theorem in Open Quantum Systems
 Authors: Kohei Kawabata, Ramanjit Sohal, and Shinsei Ryu
 Phys. Rev. Lett. 132, 070402 (2024) and supplemental material
}
2. Reviving the Lieb-Schultz-Mattis Theorem in Open Quantum Systems Authors: Yi-Neng Zhou, Xingyu Li, Hui Zhai, Chengshu Li, and Yingfei Gu arXiv:2310.01475

Recommended with a Commentary by Daniel Arovas ©, University of California, San Diego

The Lieb-Schultz-Mattis (LSM) theorem [1] is among the most consequential results in the theory of quantum magnetism. It guarantees that for an antiferromagnetic quantum spinS chain whose Hamiltonian H is short-ranged, translationally invariant, and has a global $\mathrm{U}(1)$ spin symmetry, the (singlet) ground state is either gapless or doubly degenerate in the thermodynamic limit $L \rightarrow \infty$ if S is a half-odd integer. The original (1963) proof utilizes the spin twist operator, $U=\exp \left(2 \pi i \sum_{j=1}^{L} j S_{j}^{z} / L\right)$. One then has $U^{\dagger} S_{n}^{ \pm} U=\exp (\mp 2 \pi i n / L) S_{n}^{ \pm}$, as well as $U^{\dagger} t U=e^{-2 \pi i S} t$, where t is the lattice translation operator. If $\left|\Psi_{0}\right\rangle$ is a ground state of H, and we define $\left|\Psi_{1}\right\rangle=U\left|\Psi_{0}\right\rangle$, then since under the twist $S_{n}^{+} S_{n+1}^{-} \rightarrow e^{2 \pi i / L} S_{n}^{+} S_{n+1}^{-}$, to lowest nontrivial order in L^{-1} and assuming reflection symmetry of H,

$$
\begin{equation*}
E_{1}=\left\langle\Psi_{1}\right| H\left|\Psi_{1}\right\rangle=\left\langle\Psi_{0}\right| H\left|\Psi_{0}\right\rangle+\frac{2 \pi^{2}}{L^{2}}\left\langle\Psi_{0}\right| H_{\perp}^{\mathrm{loc}}\left|\Psi_{0}\right\rangle=E_{0}+\mathcal{O}\left(L^{-1}\right) \tag{1}
\end{equation*}
$$

where $H_{\perp}^{\text {loc }}$ is local. Furthermore, if $t\left|\Psi_{0}\right\rangle=e^{i K_{0}}\left|\Psi_{0}\right\rangle$, then $t\left|\Psi_{1}\right\rangle=e^{i K_{1}}\left|\Psi_{1}\right\rangle$ with $K_{1}=$ $K_{0}-2 \pi S$. Thus, if $S \in \mathbb{Z}+\frac{1}{2}$, we have $\left\langle\Psi_{1} \mid \Psi_{0}\right\rangle=0$ because $\left|\Psi_{0}\right\rangle$ and $\left|\Psi_{1}\right\rangle$ have inequivalent crystal momenta. Ta da!

A straightforward generalization to any higher dimension $d>1$ fails because the bound one obtains is $E_{1} \leq E_{0}+\mathcal{O}\left(L^{d-2}\right)$. However, Oshikawa's flux-threading argument charts a way forward. Place the system on a d-torus, and adiabatically thread a $\mathrm{U}(1)$ flux ϕ through one of its cycles. This may be done in a translationally invariant way ${ }^{1}$ so that

[^0]$[H(\phi), t]=0$ and crystal momentum is preserved throughout the adiabatic flux insertion process. If $\left|\Psi_{0}(\phi)\right\rangle$ is an adiabatic ground state of $H(\phi)$, one can 'pull back' from the Hilbert space of $H(2 \pi)$ to that of $H(0)$ via the large gauge transformation U^{\dagger} using the LSM spin twist operator, defining $\left|\Psi_{1}\right\rangle=U^{\dagger}\left|\Psi_{0}(2 \pi)\right\rangle$. One then finds $\boldsymbol{K}_{1}-\boldsymbol{K}_{0}=2 \pi N_{\perp} S \hat{\mathbf{e}}$, where $\hat{\mathbf{e}}$ is the unit vector in the direction of the flux insertion, and N_{\perp} is the number of lattice sites in the hyperplane perpendicular to $\hat{\mathbf{e}}$. If N_{\perp} is odd, then LSM follows for $S \in \mathbb{Z}+\frac{1}{2}$. One assumes (unproven) that this holds for any system dimensions in the thermodynamic limit ${ }^{2}$.

In recent years there has been a great deal of activity in studying open quantum systems, such as in cases where a quantum system is in contact with a bath with which it may exchange energy, particle number, magnetization, etc. In this context, the system is described not by a wavefunction, but rather by a density matrix. Is there a generalization of LSM to open quantum systems?

Kawabata, Sohal, and Ryu (KSR) [2] considered quantum systems governed by the GKLS master equation [4],

$$
\begin{equation*}
\frac{d \varrho}{d t}=\mathcal{L} \varrho=-i[H, \varrho]+\sum_{n}\left(L_{n} \varrho L_{n}^{\dagger}-\frac{1}{2} L_{n}^{\dagger} L_{n} \varrho-\frac{1}{2} \varrho L_{n}^{\dagger} L_{n}\right) \tag{2}
\end{equation*}
$$

where $\varrho(t)$ is the reduced density matrix of the system, H is the Hamiltonian, and the $\left\{L_{n}\right\}$ are 'jump operators' which embody the effects of the environment. The quantum Liouvillean superoperator \mathcal{L} generates a map $\mathcal{C}_{t}=\exp (\mathcal{L} t)$ which acts on density matrices, such that $C_{t} \varrho(0)=\varrho(t)$. The map \mathcal{C}_{t} is (i) linear, (ii) trace-preserving, (iii) hermiticity-preserving, and (iv) completely positive ${ }^{3}$. Trace preservation entails that there is at least one (and possibly more, under nongeneric circumstances [5]) nonequilibrium steady state (NESS) ϱ_{0} satisfying $\mathcal{L} \varrho_{0}=0$. In any basis, the density matrix $\varrho=\sum_{\alpha, \beta} \varrho_{\alpha \beta}|\alpha\rangle\langle\beta|$ may be expressed as a vector $|\varrho\rangle=\sum_{\alpha, \beta} \varrho_{\alpha \beta}|\alpha\rangle \otimes|\beta\rangle$, a manipulation known as the Choi-Jamiołkowski isomorphism. Eqn. 2 may then be recast as a non-Hermitian Schrödinger equation, $i d|\varrho\rangle / d t=\mathcal{H}|\varrho\rangle$, with \mathcal{H} acting on a doubled Hilbert space, viz.

$$
\begin{equation*}
\mathcal{H}=H \otimes I-I \otimes H+i \sum_{n}\left(L_{n} \otimes L_{n}^{*}-\frac{1}{2} L_{n}^{\dagger} L_{n} \otimes I-I \otimes \frac{1}{2} L_{n}^{\top} L_{n}^{*}\right) \tag{3}
\end{equation*}
$$

where I is the identity ${ }^{4}$. The eigenvalues E_{a} of \mathcal{H} all satisfy $\gamma_{a}=-\operatorname{Im}\left(E_{a}\right) \geq 0$, where $\left\{\gamma_{a}\right\}$ is the spectrum of relaxation rates. Any NESS has $E_{a}=0$.

One may now define two types of symmetries [7]. A strong symmetry is one which commutes with H and all the L_{n}, whereas a weak symmetry commutes only with \mathcal{L} as a whole. KSR consider a system with translational invariance and strong $U(1)$ symmetries

[^1]

Figure 1: Fig. 1 from Ref. [2]. Eigenvalues λ of the dissipative XXZ quantum Liouvillean $\mathcal{L}(\phi)$ in the Heisenberg limit $\Delta=\eta=1$ and total filling $\nu=\frac{1}{2}$, i.e. $S_{\text {tot }}^{z}=0 .(E=i \lambda$ are the eigenvalues of \mathcal{H} in Eqn. 3; the relaxation rates are $\gamma=-\operatorname{Re} \lambda \geq 0$.) (a,b) $S=\frac{1}{2}, L=8$. $(\mathrm{c}, \mathrm{d}) S=1, L=5$. In both cases the $\mathrm{U}(1)$ flux is adiabatically inserted in the first $(+)$ Hilbert space. For all flux ϕ there is an infinite temperature NESS with $\lambda=0$ (not shown in panels b and d).
$\mathcal{U}_{ \pm}$, where $\mathcal{U}_{+}=U_{+} \otimes I$ and $\mathcal{U}_{-}=I \otimes U_{-}$. (Translational invariance is a weak symmetry.) The unitary symmetries guarantee conserved charges $N_{ \pm}$in the two Hilbert spaces, where $N_{ \pm}=\sum_{j}\left(S_{j, \pm}^{z}+S\right)$. Assuming $N_{+}=N_{-}$, they show that if $\nu \equiv N_{ \pm} / V$ is not an integer (V is the total number of spins), then \mathcal{L} is either gapless or exhibits degenerate NESS. The proof directly follows Oshikawa's derivation of LSM. Results for the XXZ Hamiltonian

$$
\begin{equation*}
H=\sum_{n=1}^{L}\left(S_{n}^{x} S_{n+1}^{x}+S_{n}^{y} S_{n+1}^{y}+\Delta S_{n}^{z} S_{n+1}^{z}\right) \tag{4}
\end{equation*}
$$

with jump operators $L_{n}=\sqrt{\eta} S_{n}^{z}$ are shown in Fig. 1. A $\mathrm{U}(1)$ flux $\phi_{ \pm}$may be inserted in either Hilbert space in a translationally-invariant way with periodic boundary conditions (see footnote 1 above), or by imposing twisted boundary conditions $S_{n+L, \pm}^{+}=\exp \left(i \phi_{ \pm}\right) S_{n, \pm}^{+}$, which breaks translational invariance. Because all jump operators are Hermitian, it is easy to see that the infinite temperature state $\varrho_{0}=2^{-L} I$ is a NESS for any ϕ. Panels (a,b) show results for a dissipative $S=\frac{1}{2}$ chain, while panels (c,d) correspond to $S=1$. Each dot corresponds to an eigenvalue of $\mathcal{L}(\phi)=-i \mathcal{H}(\phi)$. For $S=\frac{1}{2}$, the spectral flow in panel (b) shows crossings at the time-reversal symmetric value $\phi=\pi$, whereas for $S=1$ panel (d) there are no such crossings. The numerics are for small system sizes ($L=8$ and $L=5$), and presumably as $L \rightarrow \infty$ this flow results in a dense set of states in the vicinity of $\lambda=0$ for $S=\frac{1}{2}$, and that this is not the case for $S=1$. Such a scenario would be consistent with KSR's version of LSM. Much more is explored in the body of KSR as well as in the supplemental material, but on to paper $\# 2$.

In Ref. [3], Zhou et al. approach the issue from the perspective of the entanglement Hamiltonian $K \equiv-\ln \varrho_{\mathrm{s}}[8]$, where $\varrho_{\mathrm{s}}=\operatorname{Tr}_{\mathrm{b}}\left(\left|\Psi_{0}\right\rangle\left\langle\Psi_{0}\right|\right)$ is the reduced density matrix of a system explicitly coupled to an environmental bath, rather than obtained as a NESS from GKLS dynamics, which requires some phenomenological choice of the jump operators ${ }^{5} ;\left|\Psi_{0}\right\rangle$ is the ground state of the system plus bath. Two conditions are imposed. First, both discrete

[^2]

Figure 2: Fig. 2 from Ref. [3]. (a) Tripartition of a spin chain with regions A, B, and C. (b) System-bath scenario. The upper chain (system) spins have $S_{\mathrm{s}}=\frac{1}{2}$ while the lower chain (bath) spins have $S_{\mathrm{b}}=\frac{3}{2}$. (c) Mutual information $I(\mathrm{~A}: \mathrm{C} \mid \mathrm{B})$ as a function of the size $|\mathrm{B}|$. (d) Magnitude of the system spin-spin correlation $\left|\left\langle\boldsymbol{S}_{i, \mathrm{~s}} \cdot \boldsymbol{S}_{j, \mathrm{~s}}\right\rangle\right|$ versus separation $|i-j|$ in the ground states $|0\rangle_{H}$ of the physical Hamiltonian and $|0\rangle_{K}$ of the entanglement Hamiltonian.
translation and continuous spin rotation are weak symmetries, with $U^{\dagger} K U=K$. That is to say, the total state of the system plus bath is invariant under these symmetries. Second, it is assumed that the system spins are short-range correlated due to the coupling to the bath, with exponential decay of system spin correlations $C_{i j}=\operatorname{Tr}\left(\varrho S_{i, \mathrm{~s}}^{z} S_{j, 5}^{z}\right)$ on a length scale ξ which could arise if the bath opens up a gap $\Delta \sim \xi^{-1}$ or if the system effectively thermalizes at some temperature T.

The intuition is that the system is in an 'approximate quantum Markov state' where the conditional mutual information shared by regions A and C separated by B (see Fig. 2(a)) is small, i.e. $I(\mathrm{~A}: \mathrm{C} \mid \mathrm{B})<\varepsilon$ with ε vanishing as $\exp \left(l_{\mathrm{B}} / \xi\right)$ where l_{B}, is the width of region B . The conditional mutual information is defined as $I(\mathrm{~A}: \mathrm{C} \mid \mathrm{B})=I(\mathrm{~A}: \mathrm{BC})-I(\mathrm{~A}: \mathrm{B})$, where $I(\mathrm{~A}: \mathrm{B})=S_{\mathrm{A}}+S_{\mathrm{B}}-S_{\mathrm{AB}}$ is the mutual information shared by A and B, and S_{A} is the von Neumann entropy of A^{6}. When $I(\mathrm{~A}: \mathrm{C} \mid \mathrm{B})$ is small, it means that B inhibits informationsharing between A and C , and when $I(\mathrm{~A}: \mathrm{C} \mid \mathrm{B})=0$, then $K_{\mathrm{ABC}}=K_{\mathrm{AB}}+K_{\mathrm{BC}}-K_{\mathrm{B}}$, which says that the entanglement Hamiltonian for the entire region $A B C$ may be broken up into contributions from smaller regions. Zhou et al. conjecture that when the system is in an approximate quantum Markov state that K is exponentially local. This permits an estimate of the 'energy' difference $\Delta=\left\langle U^{\dagger} K U\right\rangle_{0}-\langle K\rangle_{0}$, where U is the LSM twist operator and the expectation values are taken in the ground state $|0\rangle_{K}$ of K. A simple calculation yields this difference $\Delta \sim 4 \pi^{2} \xi^{3} / L$ as $L \rightarrow \infty$. Since K is translationally invariant, $|0\rangle_{K}$ and $U|0\rangle_{K}$ have inequivalent crystal momenta if the system spins are all $S \in \mathbb{Z}+\frac{1}{2}$, by the LSM argument.

Zhou et al. study two explicit models. The first is given by

$$
\begin{equation*}
H=\sum_{j=1}^{L}\left(\boldsymbol{S}_{j} \cdot \boldsymbol{S}_{j+1}+\frac{1}{3}\left(\boldsymbol{S}_{j} \cdot \boldsymbol{S}_{j+1}\right)^{2}+\gamma \boldsymbol{S}_{j, \mathrm{~s}} \cdot \boldsymbol{S}_{j, \mathrm{~b}}\right) \tag{5}
\end{equation*}
$$

[^3]

Figure 3: Fig. 3 from Ref. [3]. (a) Total spin and momentum resolved entanglement spectrum. The dashed line is given by $\lambda=v|\sin k|+\lambda_{0}$, with v and λ_{0} fitted from the lowest eigenvalues at the lowest two momenta and $L=16$. (b) Comparison of $\left\langle U^{\dagger} K U\right\rangle_{0}-\langle K\rangle_{0}$ (blue) and $-\ln \left\langle U^{\dagger} \varrho U\right\rangle_{0}-\langle K\rangle_{0}$ (orange) versus L. See text for more details.
where $S_{\mathrm{s}}=\frac{1}{2}$ and $S_{\mathrm{b}}=\frac{3}{2}$, and $\boldsymbol{S}_{j} \equiv \boldsymbol{S}_{j, \mathrm{~s}}+\boldsymbol{S}_{j, \mathrm{~b}}$. This corresponds to the spin-ladder depicted in Fig. 2(b). When $\gamma>0$, each rung of the ladder is preferentially in a total spin $S=1$ state, and in this subspace remaining terms in H yield the $S=1$ AKLT Hamiltonian [9], which exhibits a Haldane gap [10] and a spin correlation length of $\xi_{\text {AкLт }}=1 / \ln 3 \approx 0.91$. Given the exact many-body ground state in the large- γ limit, one can numerically compute the entanglement Hamiltonian K using singular value decomposition. Fig. 2(c) shows the mutual information $I(\mathrm{~A}: \mathrm{C} \mid \mathrm{B})$, which exhibits a clear exponential decay consistent with the approximate quantum Markov state assumption. The decay length for the chosen value of γ $(=1 ?)$ is $\xi \approx 0.38$, which is comparable though smaller (as expected) to the AKLT result. In Fig. 3(a), the spin and momentum resolved eigenvalues λ of the entanglement Hamiltonian K are shown $(L=16)$. In Fig. 3(b) the difference $\left\langle U^{\dagger} K U\right\rangle_{0}-\langle K\rangle_{0}$ is plotted versus L. It is wellfit to the curve $c_{0}+c_{1} / L+c_{3} / L^{3}$ with $\left(c_{0}, c_{1}, c_{3}\right)=(0.0014,3.8,-19)^{7}$. The tiny values of c_{0} suggest that the entanglement spectral gap vanishes in the thermodynamic limit. In addition to the Hamiltonian of Eqn. 4, another model is studied: a $S=\frac{1}{2}$ Majumdar-Ghosh chain [11] coupled to a $S=\frac{3}{2}$ bath, which yields a doubly degenerate entanglement Hamiltonian ground state separated by a robust gap from the other eigenvalues, again consistent with LSM.

It would have been illustrative to consider a $S_{\mathrm{s}}=1$ chain coupled to a bath and contrast the results with those of the two $S_{\mathrm{s}}=\frac{1}{2}$ chains studied. It would seem that a form of Oshikawa's flux insertion argument should be applicable, extending the conclusions of Zhou et al. to dimensions $d>1$.

I am grateful to Yi-Zhuang You for helpful discussions and for alerting me to Ref. [3].

[^4]
References

[1] E. Lieb, T. Schultz, and D. Mattis, Ann Phys. 16, 407 (1963); I. Affleck, Phys. Rev. B 37, 5186 (1988).; M. Oshikawa, Phys. Rev. Lett. 84, 1535 (2000); M. B. Hastings, Phys. Rev. B 69, 104431 (2004); M. Cheng, Phys. Rev. B 99, 075143 (2019); H. Tasaki, arXiv:2202.06403; M. Cheng and N. Seiberg, SciPost Phys. 15, 051 (2023).
[2] K. Kawabata, R. Sohal, and S. Ryu, Phys. Rev. Lett. 132, 070402 (2024) and supplemental material.
[3] Y.-N. Zhou, X. Li, H. Zhai, C. Li, and Y. Gu, arXiv:2310.01475.
[4] V. Gorini, A. Kossakowski, and E. Sudarshan, J. Math. Phys. 17, 821 (1976); G. Lindblad, Comm. Math. Phys. 48, 119 (1976); H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007); D. Manzano, AIP Advances 10, 025106 (2020).
[5] V. V. Albert and L. Jiang, Phys. Rev. A 89, 022118 (2014).
[6] M. Jiang, S. Lui, and S. Fu, Phys. Rev. A 87, 022310 (2013).
[7] B. Buča and T. Prosen, New. Jour. Phys. 14, 073007 (2012).
[8] H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).
[9] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987).
[10] F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).
[11] C. K. Majumdar and D. K. Ghosh, Jour. Math. Phys. 10, 1388 (1969).

[^0]: ${ }^{1}$ One replaces $S_{r}^{+} S_{r^{\prime}}^{-} \rightarrow S_{r}^{+} S_{\boldsymbol{r}^{\prime}}^{-} \exp \left\{i \int_{r}^{r^{\prime}} d \boldsymbol{\ell} \cdot \boldsymbol{A}_{\phi}(\ell)\right\}$, where $\boldsymbol{A}_{\phi}(\boldsymbol{\ell})=\phi \hat{\mathbf{e}} / L$ is the vector potential of a geometric flux tube threading a cycle of the d-torus in the ê direction.

[^1]: ${ }^{2}$ More generally, Oshikawa showed that if the $\mathrm{U}(1)$ charge per unit cell is $\nu=p / q$ with p and q relatively prime, then a unique gapped ground state cannot exist when $\nu N_{\perp} \neq \mathbb{Z}$. To elicit a gap then requires a breaking of translational symmetry in which the unit cell is q-fold enlarged. For quantum spins, the local $\mathrm{U}(1)$ charge is $n_{j}=S_{j}^{z}+S$.
 ${ }^{3} \mathrm{~A} \operatorname{map} \mathcal{C}$ is completely positive if $(\mathcal{C} \varrho) \otimes \omega$ is positive whenever $\varrho \otimes \omega$ is positive. Positivity means that $\langle\Psi| \varrho|\Psi\rangle \geq 0$ for all $|\Psi\rangle$. An example of a linear map which preserves trace and hermiticity yet which is not completely positive is matrix transposition.
 ${ }^{4}$ There is no new physics revealed by expressing Eqn. 2 in this way, but it perhaps provides a more familiar setting, as well as entailing some notational conveniences.

[^2]: ${ }^{5}$ Deriving the jump operators from the system, bath, and system-bath coupling Hamiltonians is formally described in ch. 3 of Breuer and Petruccione [4], but is in general a highly impractical procedure.

[^3]: ${ }^{6}$ For example, if A and B are disconnected, then $S_{\mathrm{AB}}=S_{\mathrm{A}}+S_{\mathrm{B}}$ and $I(\mathrm{~A}: \mathrm{B})=0$.

[^4]: ${ }^{7} \mathrm{~A}$ second difference, $-\ln \left\langle U^{\dagger} \varrho U\right\rangle_{0}-\langle K\rangle_{0}$, which is numerically easier to compute, is also plotted.

