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The Lieb-Schultz-Mattis (LSM) theorem [1] is among the most consequential results in
the theory of quantum magnetism. It guarantees that for an antiferromagnetic quantum spin-
S chain whose Hamiltonian H is short-ranged, translationally invariant, and has a global
U(1) spin symmetry, the (singlet) ground state is either gapless or doubly degenerate in the
thermodynamic limit L → ∞ if S is a half-odd integer. The original (1963) proof utilizes the
spin twist operator, U = exp(2πi

∑L
j=1 jS

z
j /L). One then has U †S±

n U = exp(∓2πin/L)S±
n ,

as well as U †t U = e−2πiS t, where t is the lattice translation operator. If |Ψ0⟩ is a ground
state of H, and we define |Ψ1⟩ = U |Ψ0⟩, then since under the twist S+

n S
−
n+1 → e2πi/LS+

n S
−
n+1,

to lowest nontrivial order in L−1 and assuming reflection symmetry of H,

E1 = ⟨Ψ1 |H |Ψ1 ⟩ = ⟨Ψ0 |H |Ψ0 ⟩ +
2π2

L2
⟨Ψ0 |H loc

⊥ |Ψ0 ⟩ = E0 + O(L−1) , (1)

where H loc
⊥ is local. Furthermore, if t |Ψ0⟩ = eiK0 |Ψ0⟩, then t |Ψ1⟩ = eiK1 |Ψ1⟩ with K1 =

K0−2πS. Thus, if S ∈ Z+ 1
2
, we have ⟨Ψ1 |Ψ0 ⟩ = 0 because |Ψ0⟩ and |Ψ1⟩ have inequivalent

crystal momenta. Ta da!

A straightforward generalization to any higher dimension d > 1 fails because the bound
one obtains is E1 ≤ E0 + O(Ld−2). However, Oshikawa’s flux-threading argument charts
a way forward. Place the system on a d-torus, and adiabatically thread a U(1) flux ϕ
through one of its cycles. This may be done in a translationally invariant way1 so that

1One replaces S+
r S−

r′ → S+
r S−

r′ exp

{
i
r′∫
r

dℓ ·Aϕ(ℓ)

}
, where Aϕ(ℓ) = ϕ ê/L is the vector potential of a

geometric flux tube threading a cycle of the d-torus in the ê direction.
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[
H(ϕ), t

]
= 0 and crystal momentum is preserved throughout the adiabatic flux insertion

process. If |Ψ0(ϕ)⟩ is an adiabatic ground state of H(ϕ), one can ‘pull back’ from the Hilbert
space of H(2π) to that of H(0) via the large gauge transformation U † using the LSM spin
twist operator, defining |Ψ1⟩ = U † |Ψ0(2π)⟩. One then finds K1 −K0 = 2πN⊥S ê, where ê
is the unit vector in the direction of the flux insertion, and N⊥ is the number of lattice sites
in the hyperplane perpendicular to ê. If N⊥ is odd, then LSM follows for S ∈ Z + 1

2
. One

assumes (unproven) that this holds for any system dimensions in the thermodynamic limit2.

In recent years there has been a great deal of activity in studying open quantum systems,
such as in cases where a quantum system is in contact with a bath with which it may exchange
energy, particle number, magnetization, etc. In this context, the system is described not by
a wavefunction, but rather by a density matrix. Is there a generalization of LSM to open
quantum systems?

Kawabata, Sohal, and Ryu (KSR) [2] considered quantum systems governed by the GKLS
master equation [4],

dϱ

dt
= Lϱ = −i[H, ϱ] +

∑
n

(
Ln ϱL

†
n − 1

2
L†
nLn ϱ− 1

2
ϱL†

nLn

)
, (2)

where ϱ(t) is the reduced density matrix of the system, H is the Hamiltonian, and the {Ln}
are ‘jump operators’ which embody the effects of the environment. The quantum Liouvillean
superoperator L generates a map Ct = exp(Lt) which acts on density matrices, such that
Ct ϱ(0) = ϱ(t). The map Ct is (i) linear, (ii) trace-preserving, (iii) hermiticity-preserving, and
(iv) completely positive3. Trace preservation entails that there is at least one (and possibly
more, under nongeneric circumstances [5]) nonequilibrium steady state (NESS) ϱ0 satisfying
Lϱ0 = 0. In any basis, the density matrix ϱ =

∑
α,β ϱαβ |α⟩⟨β| may be expressed as a vector

|ϱ⟩ =
∑

α,β ϱαβ |α⟩⊗|β⟩, a manipulation known as the Choi-Jamio lkowski isomorphism. Eqn.
2 may then be recast as a non-Hermitian Schrödinger equation, i d |ϱ⟩/dt = H| ϱ ⟩, with H
acting on a doubled Hilbert space, viz.

H = H ⊗ I − I ⊗H + i
∑
n

(
Ln ⊗ L∗

n − 1
2
L†
nLn ⊗ I − I ⊗ 1

2
LT

nL
∗
n

)
, (3)

where I is the identity4. The eigenvalues Ea of H all satisfy γa = −Im(Ea) ≥ 0, where {γa}
is the spectrum of relaxation rates. Any NESS has Ea = 0.

One may now define two types of symmetries [7]. A strong symmetry is one which
commutes with H and all the Ln, whereas a weak symmetry commutes only with L as a
whole. KSR consider a system with translational invariance and strong U(1) symmetries

2More generally, Oshikawa showed that if the U(1) charge per unit cell is ν = p/q with p and q relatively
prime, then a unique gapped ground state cannot exist when νN⊥ ̸= Z. To elicit a gap then requires a
breaking of translational symmetry in which the unit cell is q-fold enlarged. For quantum spins, the local
U(1) charge is nj = Sz

j + S.
3A map C is completely positive if (Cϱ)⊗ ω is positive whenever ϱ⊗ ω is positive. Positivity means that

⟨Ψ| ϱ |Ψ⟩ ≥ 0 for all |Ψ⟩. An example of a linear map which preserves trace and hermiticity yet which is not
completely positive is matrix transposition.

4There is no new physics revealed by expressing Eqn. 2 in this way, but it perhaps provides a more
familiar setting, as well as entailing some notational conveniences.

2



Figure 1: Fig. 1 from Ref. [2]. Eigenvalues λ of the dissipative XXZ quantum Liouvillean
L(ϕ) in the Heisenberg limit ∆ = η = 1 and total filling ν = 1

2
, i.e. Sz

tot = 0. (E = iλ are the
eigenvalues of H in Eqn. 3; the relaxation rates are γ = −Reλ ≥ 0.) (a,b) S = 1

2
, L = 8.

(c,d) S = 1, L = 5. In both cases the U(1) flux is adiabatically inserted in the first (+)
Hilbert space. For all flux ϕ there is an infinite temperature NESS with λ = 0 (not shown
in panels b and d).

U±, where U+ = U+ ⊗ I and U− = I ⊗ U−. (Translational invariance is a weak symmetry.)
The unitary symmetries guarantee conserved charges N± in the two Hilbert spaces, where
N± =

∑
j(S

z
j,± + S). Assuming N+ = N−, they show that if ν ≡ N±/V is not an integer

(V is the total number of spins), then L is either gapless or exhibits degenerate NESS. The
proof directly follows Oshikawa’s derivation of LSM. Results for the XXZ Hamiltonian

H =
L∑

n=1

(
Sx
n S

x
n+1 + Sy

n S
y
n+1 + ∆Sz

n S
z
n+1

)
(4)

with jump operators Ln =
√
η Sz

n are shown in Fig. 1. A U(1) flux ϕ± may be inserted
in either Hilbert space in a translationally-invariant way with periodic boundary conditions
(see footnote 1 above), or by imposing twisted boundary conditions S+

n+L,± = exp(iϕ±)S+
n,±,

which breaks translational invariance. Because all jump operators are Hermitian, it is easy
to see that the infinite temperature state ϱ0 = 2−LI is a NESS for any ϕ. Panels (a,b) show
results for a dissipative S = 1

2
chain, while panels (c,d) correspond to S = 1. Each dot

corresponds to an eigenvalue of L(ϕ) = −iH(ϕ). For S = 1
2
, the spectral flow in panel (b)

shows crossings at the time-reversal symmetric value ϕ = π, whereas for S = 1 panel (d)
there are no such crossings. The numerics are for small system sizes (L = 8 and L = 5),
and presumably as L → ∞ this flow results in a dense set of states in the vicinity of λ = 0
for S = 1

2
, and that this is not the case for S = 1. Such a scenario would be consistent

with KSR’s version of LSM. Much more is explored in the body of KSR as well as in the
supplemental material, but on to paper #2.

In Ref. [3], Zhou et al. approach the issue from the perspective of the entanglement
Hamiltonian K ≡ − ln ϱs [8], where ϱs = Trb

(
|Ψ0⟩⟨Ψ0|

)
is the reduced density matrix of a

system explicitly coupled to an environmental bath, rather than obtained as a NESS from
GKLS dynamics, which requires some phenomenological choice of the jump operators5; |Ψ0⟩
is the ground state of the system plus bath. Two conditions are imposed. First, both discrete

5Deriving the jump operators from the system, bath, and system-bath coupling Hamiltonians is formally
described in ch. 3 of Breuer and Petruccione [4], but is in general a highly impractical procedure.
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Figure 2: Fig. 2 from Ref. [3]. (a) Tripartition of a spin chain with regions A, B, and C. (b)
System-bath scenario. The upper chain (system) spins have Ss = 1

2
while the lower chain

(bath) spins have Sb = 3
2
. (c) Mutual information I(A : C |B) as a function of the size |B|.

(d) Magnitude of the system spin-spin correlation |⟨Si,s ·Sj,s⟩| versus separation |i−j| in the

ground states |0⟩H of the physical Hamiltonian and |0⟩K of the entanglement Hamiltonian.

translation and continuous spin rotation are weak symmetries, with U †KU = K. That is to
say, the total state of the system plus bath is invariant under these symmetries. Second, it
is assumed that the system spins are short-range correlated due to the coupling to the bath,
with exponential decay of system spin correlations Cij = Tr

(
ϱ Sz

i,sS
z
j,s

)
on a length scale ξ

which could arise if the bath opens up a gap ∆ ∼ ξ−1 or if the system effectively thermalizes
at some temperature T .

The intuition is that the system is in an ‘approximate quantum Markov state’ where the
conditional mutual information shared by regions A and C separated by B (see Fig. 2(a)) is
small, i.e. I(A : C |B) < ε with ε vanishing as exp(lB/ξ) where lB, is the width of region B.
The conditional mutual information is defined as I(A : C |B) = I(A : BC) − I(A : B), where
I(A : B) = SA + SB − SAB is the mutual information shared by A and B, and SA is the von
Neumann entropy of A6. When I(A : C |B) is small, it means that B inhibits information-
sharing between A and C, and when I(A : C |B) = 0, then KABC = KAB + KBC −KB, which
says that the entanglement Hamiltonian for the entire region ABC may be broken up into
contributions from smaller regions. Zhou et al. conjecture that when the system is in an
approximate quantum Markov state that K is exponentially local. This permits an estimate
of the ‘energy’ difference ∆ =⟨U †KU⟩0 − ⟨K⟩0, where U is the LSM twist operator and the
expectation values are taken in the ground state |0⟩K of K. A simple calculation yields this

difference ∆ ∼ 4π2ξ3/L as L → ∞. Since K is translationally invariant, |0⟩K and U |0⟩K have
inequivalent crystal momenta if the system spins are all S ∈ Z + 1

2
, by the LSM argument.

Zhou et al. study two explicit models. The first is given by

H =
L∑

j=1

(
Sj · Sj+1 + 1

3
(Sj · Sj+1)

2 + γ Sj,s · Sj,b

)
, (5)

6For example, if A and B are disconnected, then SAB = SA + SB and I(A : B) = 0.
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Figure 3: Fig. 3 from Ref. [3]. (a) Total spin and momentum resolved entanglement
spectrum. The dashed line is given by λ = v| sin k|+λ0, with v and λ0 fitted from the lowest
eigenvalues at the lowest two momenta and L = 16. (b) Comparison of ⟨U †KU⟩0 − ⟨K⟩0
(blue) and − ln ⟨U †ϱU⟩0 − ⟨K⟩0 (orange) versus L. See text for more details.

where Ss = 1
2

and Sb = 3
2
, and Sj ≡ Sj,s +Sj,b. This corresponds to the spin-ladder depicted

in Fig. 2(b). When γ > 0, each rung of the ladder is preferentially in a total spin S = 1
state, and in this subspace remaining terms in H yield the S = 1 AKLT Hamiltonian [9],
which exhibits a Haldane gap [10] and a spin correlation length of ξAKLT = 1/ ln 3 ≈ 0.91.
Given the exact many-body ground state in the large-γ limit, one can numerically compute
the entanglement Hamiltonian K using singular value decomposition. Fig. 2(c) shows the
mutual information I(A : C |B), which exhibits a clear exponential decay consistent with the
approximate quantum Markov state assumption. The decay length for the chosen value of γ
(= 1?) is ξ ≈ 0.38, which is comparable though smaller (as expected) to the AKLT result. In
Fig. 3(a), the spin and momentum resolved eigenvalues λ of the entanglement Hamiltonian K
are shown (L = 16). In Fig. 3(b) the difference ⟨U †KU⟩0−⟨K⟩0 is plotted versus L. It is well-
fit to the curve c0 + c1/L+ c3/L

3 with (c0, c1, c3) = (0.0014, 3.8,−19)7. The tiny values of c0
suggest that the entanglement spectral gap vanishes in the thermodynamic limit. In addition
to the Hamiltonian of Eqn. 4, another model is studied: a S = 1

2
Majumdar-Ghosh chain

[11] coupled to a S = 3
2

bath, which yields a doubly degenerate entanglement Hamiltonian
ground state separated by a robust gap from the other eigenvalues, again consistent with
LSM.

It would have been illustrative to consider a Ss = 1 chain coupled to a bath and contrast
the results with those of the two Ss = 1

2
chains studied. It would seem that a form of

Oshikawa’s flux insertion argument should be applicable, extending the conclusions of Zhou
et al. to dimensions d > 1.

I am grateful to Yi-Zhuang You for helpful discussions and for alerting me to Ref. [3].

7A second difference, − ln ⟨U†ϱU⟩0 − ⟨K⟩0, which is numerically easier to compute, is also plotted.
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