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In the mid 1970s, theoretical physicist turned theoretical ecologist Robert May published
an extremely influential set of manuscripts on chaos, stability, and diversity in complex
ecosystems [1, 2]. May was directly inspired by the work of Wigner and Dyson which used
random matrix theory (RMT) to understand the properties of complex nuclei. May argued
that the more diverse an ecosystem is (roughly defined as the number of species present),
the less stable it becomes. To make this counter-intuitive argument, May considered an
ecosystems consisting of S species whose abundances were given by N∗

i where i = 1, . . . , S.
He then imagined perturbing the ecosystem N∗

i → N∗
i +δNi. In linear response, the dynamics

of such an ecosystem are described by the equations:

dδNi

dt
=

S∑

j=1

MijδNj. (1)

Invoking Wigner and Dyson, he modeled M as random matrix whose diagonal entries were
all −1 and whose off diagonal elements were drawn from a normal distribution N (0, σ2) with
mean zero and variance σ2. The maximum eigenvalue of M can easily be calculate using
results from RMT and is given by λmax = −1+

√
Sσ. Stability requires λmax < 0, yielding a

criterion for the maximum size S∗ for a stable ecosystem at steady-state, namely S∗σ2 < 1.
This has since become known as the May stability bound and, within May’s framework,
serves as an upper bound on ecological diversity.
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One major deficiency of May’s argument is that it does not allow for the possibility that
complex ecosystems can self organize through immigration and extinction. The simplest
model that contains all these processes is the Generalized Lotka-Volterra model (GLV) which
takes the form

dNi

dt
= Ni(1−Ni −

∑

j 6=i

AijNj) + λ, (2)

where i = 1, . . . , S runs over the S species in the “regional species pool”, Ni denotes the
abundance of species i, Aij encodes how species j affects the growth rate of species i (with
positive elements indicating competition and negative elements indicating cooperation), and
λ is the immigration rate of species into the ecosystem from the regional species pool and is
assumed to be small (λ ≪ 1). Note, that in writing this equation, we have already rescaled
time by the species growth rate, species abundances by their carrying capacity, and inter-
action coefficients Aij by their self interactions Aii, so that all quantities are dimensionless.
Despite its simplicity, this equation holds many surprises, especially when the number of
species is large. The term in the parenthesis of Eq. 2, gi(N) = (1−Ni −

∑
j AijNj), can be

interpreted as the growth rate of species i in the presence of all the other species. If gi(N)
is negative, species i will go extinct in the absence of immigration and will persist at a low
abundance of order Ni ∼ λ in the presence of immigration. Since the growth rate of every
species depends of the abundance of every other species, this model represents a non-trivial
complex, interacting system that becomes extremely hard to analyze analytically.

For this reason, it is again useful to analyze the statistical properties of Eq. 2, when the
interaction coefficients Aij are drawn from a random distribution with mean 〈Aij〉 = µ/S
and variance 〈δAijδAkl〉 = (σ2/S) (δikδjl + ρδilδjk). Here the parameter ρ measures the
asymmetry of the interactions. When ρ = 1, the interactions are reciprocal – how species
i affects species j is identical to how species j affects species i. However, when ρ < 1,
the interactions are non-reciprocal. This non-reciprocity has important implications for the
dynamical behavior of the equations. When interactions are reciprocal, the dynamics admit
a Lyapunov function and the system always reaches a steady-state. However, in the presence
of non-reciprocity the system can exhibit complex dynamical behavior including chaos [3–6]

Over the last decade, motivated by new experimental techniques for measuring proper-
ties of large microbial ecosystems, there has been a flurry of new theoretical works trying to
understand these equations in high dimensions using techniques from the statistical physics
of disordered systems such as the cavity method and dynamical mean field theory (DMFT).
For a pedagogical set of lectures covering these developments, see our Les Houches lectures
[7]. The phase diagram for these equations was first worked out using the zero-temperature
cavity method in [8]. However, understanding the chaos that emerges for non-reciprocal
interactions and its implications for diversity remained an open problem. Hints that this
chaotic phase exhibited extremely interesting dynamics appeared in [4]. Numerical simula-
tion in conjunction with DMFT calculations showed, that for the special case of completely
anti-symmetric interactions (ρ = −1 in the equations above), the dynamics exhibited a
“boom” and “bust” behavior where species would stay at low abundance before shooting up
to high abundances. In the presence of some minimal spatial structure (multiple connected
islands), the resulting chaotic dynamics supported much more diversity than would be possi-
ble at steady-state, an observation with important implications for understanding the origin
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of the fine grained diversity observed in sequencing experiments of microbial ecosystems [9].
Until recently, relatively little was understood about the chaotic dynamics outside this

special anti-symmetric case. Two recent papers by Mahadevan et al. and de Pirey and Bunin
have made significant progress towards answering this question by developing impressive new
technical tools based on DMFT and scaling arguments [5, 6]. In [5], Mahadevan et al. build
upon their earlier work to show that the spatiotemporal chaos with boom-bust dynamics
observed in [4] can occur even when ecosystems are assembled through sequential invasions
of new species and where the strict anti-symmetry condition is relaxed. This suggests that
the increased diversity seen in the chaotic phase may be generic even in the presence of
evolution. These impressive calculations (which are really too technical to discuss in this
short format) open up the possibility of mathematically modeling eco-evolutionary dynamics
– one of the biggest open problems in evolution and ecology.

In a complementary analysis, de Pirey and Bunin develop a new DMFT for the chaotic
dynamics seen in the GLV (Eq. 2) [6]. This DMFT naturally explains the presence of the
boom-bust chaotic dynamics seen in simulations, where species persist at low-abundance for
extended periods of time, before shooting up to high abundance for a considerable duration,
and then once again returning to low abundance. The authors start by performing careful
numerical simulations that show that at any given time, the ecosystem consists of a mixture
of high-abundance species and low-abundance species (species with Ni ∼ λ). They derive
analytic expressions for the steady-state abundance distribution and an analogue of the
fluctuation-dissipation theorem for chaotic dynamics relating static and dynamics correlation
functions.

To derive these results, Bunin and de Pirey consider the special case where interac-
tions between species are uncorrelated (ρ = 0) and use an ansatz for the two time species-
species correlation function Cλ(t, t

′). Their key insight is that the natural variables for the
problem are not the time t and abundances Ni, but the rescaled quantities t/| lnλ| and
zi = lnNi/| lnλ| (recall λ is the immigration rate and all quantities in Eq. 2 are dimen-
sionless). With these rescaled variables, the two-time correlation function exhibits a data
collapse Cλ(t, t + s| lnλ|) → Ĉ(s), allowing one to write a DMFT for zi(s). This DMFT
shows that the dynamics can be thought of as a jump process where low abundance species
first shoot up to high abundance and then slowly return to low abundances. They also show
that the return of high abundance species to low abundances can be modeled by a biased
random walk with an absorbing boundary condition. Using this DMFT solution, they de-
rive a number of remarkable predictions. We focus on one of these: an unexpected relation
between May’s stability bound and chaos. Recall, that in the chaotic system the species fall
into two groups: species at high abundances and species at low abundances near the immi-
gration floor. de Pirey and Bunin show that even in the chaotic regime, the number of high
abundance species in the ecosystem will always be less than the May stability bound. This
result is quite surprising since it suggests that ecosystems self-organize in such a way that
the high abundance species still follow May’s diversity bound even when they are chaotic.

These papers highlight the exciting possibility that it may be possible to analytically
understand complex eco-evolutionary dynamics. They also show how thinking about high-
dimensional ecology offers a rich playground for statistical physics.
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