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Several interesting convex optimization problems, coming from statistical learning, could
be phrased as min-max problems over a bipartite graphs. These are the graphs in which
the vertices could be divided into two sets (sometimes called the left set and the right set),
such that edges only connect vertices from distinct sets. When there are a large number of
variables (and constraints) in that convex problem, in other words the numbers of vertices
in the left set and the right set are both large, one could apply a mean-field theory technique
called cavity method, originally invented for spin glasses on typically non-bipartite graphs.

Recently, Clark and Sompolinsky [1] discussed three such problems: The Gardner per-
ceptron capacity problem, the manifold capacity problem, and kernel ridge regression. It is a
useful pedagogical paper. A predecessor of such two step cavity method, without explicitly
mentioning the bipartite structure, is the work of Shamir and Sompolinsky [5]. Unfortu-
nately, the manuscript does not cite a long series of other papers setting up cavity method
for bipartite graphs from the intervening years. See, for example, the recent paper by Rocks
and Mehta [4], my second recommendation, taking up similar problems and applying similar
methods.

To give a flavor of the ideas, I will pick one of the simplest problem of this kind is ridge
regression with (quenched) random features {ξµi}{µ=1,...,P ; i=1,...,N} with

⟨ξµi⟩ = 0, ⟨ξµiξνj⟩ =
1

N
δµνδij.

This is essentially the third problem we just discussed by Clark and Sompolinsky, with
ϕi(xµ) ≡ ξµi. One major difference is the scaling of ξµi covariances as

1
N
. We want to keep

the regression weights O(1) and not O(1/
√
N). The presentation follows [3].
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Let us say we have some observations {yµ}Pi=1 generated by a teacher model

yµ =
N∑
i=1

ξµiai. (1)

A student model is trying to learn the parameters {ai}Ni=1. If there is enough data (P ≥ N),
and the P × N matrix Ξ, with entries ξµi, has rank N , then just minimizing the square

loss
∑P

µ=1(yµ −
∑N

i=1 ξµiwi)
2 will do. However, we may have an overparametrized regression

problem: P << N . In that case, the square loss may be augmented by quadratic penalties
for the weights to find a unique set of weights {wi}Ni=1.

The resulting optimization problem looks like:

min
w

[1
2

P∑
µ=1

(yµ −
N∑
i=1

ξµiwi)
2 +

γ

2

N∑
i=1

w2
i /ρi

]
. (2)

This is a convex problem, with ρi > 0 for all i. The penalty terms want wi = 0 for all i. The
loss function would be satisfied if wi = ai. We want to know how much mistake we get in
each weight, measured by ∆i = ai − wi. We want to know how big these errors are.

Using the expression of yµ from Eq. 1 and using it in Eq. 2, we get the optimization
problem for {∆i}:

min
∆

[1
2

P∑
µ=1

(
N∑
i=1

ξµi∆i)
2 +

γ

2

N∑
i=1

(ai −∆i)
2/ρi

]
. (3)

Using the Hubbard-Stratonovich trick and introducing auxilliary variables {λµ}Pµ=1, the
previous optimization problem can be rewritten as

min
∆

max
λ

[
− 1

2

P∑
µ=1

λ2µ +
P∑

µ=1

N∑
i=1

λµξµi∆i +
γ

2

N∑
i=1

(∆i − ai)
2/ρi

]
.

One can now imagine a bipartite graph with P vertices on the left side, connected to N
vertices on the right side. The λµ variable lives on the µ-th left vertex and the ∆i variable
live on the i-th right vertex, and these two variables are coupled by the quenched random
variable ξµi ∼ O(1/

√
N) associated with the (µi) edge. The random ξµi is analogous to Jij in

disordered spin models. In addition to such interaction terms, there are one-body terms, like
local field energies in spin models. We can imagine as if there are two types of continuous
spins: ∆i’s and λµ’s. Of course, a key difference with spin model energy minimization is
that we are maximizing in λµ’s while minimizing in ∆i’s.

The idea in the cavity method to approximate this optimization problem by another with
a collection self-consistent effective one-body terms

min
∆

max
λ

[∑
µ

ϕµ(λµ) +
∑
i

ψi(∆i)
]
.

Now let us pay attention to a single λµ variable. What is a effective one site objective
function of λµ? Looks like we have

ϕµ(λµ)
?
= −1

2
λ2µ +

( N∑
i=1

ξµi∆i

)
λµ := −1

2
λ2µ + hλλµ
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where, for large N , we could replaced the ‘effective λ field’
(∑N

i=1 ξµi∆i

)
by a quenched

random variable hλ ∼ N (0, 1
N

∑
i∆

2
i ). This is the naive mean-field theory.

The key thing to improve this naive mean-field theory is to incorporate the contribution
of the analogue of Onsager reaction terms. These terms are very important for cavity method
and Thouless-Anderson-Palmer equations in spin glass theory [2]. If a µ-vertex with a λµ
value is added, it changes each ∆i a bit from the solution where we do not have that vertex
(the µ-cavity). The net feedback of these changes of many ∆i’s on λµ is mimicked by an
additional term in ϕµ(λµ). Similar considerations applies to ψi(∆i) as well. One has to
then get the distribution λµ’s and the distribution of ∆i’s to satisfy a set of self-consistency
conditions. The ultimate goal is to calculate the average loss for the model with {wi} on a
new input-output pair ((ξ1 (N+1), . . . , ξP (N+1), yN+1), telling us how well the regression model
generalizes.

A few brief words on the Gardner capacity problem and on the manifold capacity one.
These two problems have to do with classification as opposed to regression. The first problem
starts with P random N dimensional points with random ±1 labels on each point. We are
asked to find a hyperplane through the origin which separates +1 labeled points from the
−1 labeled ones. As α = P/N increases, there is a capacity, an αc, such that, for α > αc,
the probability of finding such that a plane goes to zero, when N,P = αN both go to
infinity. This was originally a problem posed and solved by Cover. Gardner sets up the
problem where the separating of is done with a minimum margin: the points has to be at
least distance κ away from the hyperplane. This is a more demanding constraint, resulting
in a κ-dependent αc. In the manifold capacity problem, the points are replaced by extended
shapes with non-zero widths, making the problem more complex.

In summary, many convex problems related to statistical learning have a set of N weights
and a set of P ‘constraints’ (low error in prediction or correct classification). This structure
leads to a bipartite graph. When N,P are large, one can gain many insights by using mean
field theory on such problems. The cavity method avoids some mysteries associated with
the replica trick. It can even be implemented as an approximate numerical approach for
concrete realizations of the problem.
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