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What are the possible phases of non-equilibrium matter? This, to my mind, is one of the

great open questions for theoretical condensed matter physics. Notably, in contrast to systems in

equilibrium, there does not even exist a consensus definition of how one should define a ‘phase

of matter’ in the non-equilibrium setting. Nonetheless, I will argue that the recommended paper

presents a construction that should be considered a new kind of non-equilibrium phase of matter,

under any reasonable definition of the term.

There are multiple useful axes along which nonequilibrium many body systems may be cate-

gorized. We could be discussing systems that are classical or quantum. We could be discussing

systems with ‘passive’ dynamics (i.e. a time independent Hamiltonian), or with ‘active’ dynam-

ics (incorporating e.g. measurements and feedback). We could be discussing systems where the

dynamics is local (in space and/or time) or not. And we could be discussing systems that can be

embedded into a physically reasonable number of spatial dimensions (d = 0, 1, 2, 3), or not. The

recommended paper considers dynamics which is quantum, active, local and in d = 2, 3.

The ‘intellectual parentage’ of the recommended work is two-fold. On the one hand, it may

be viewed as a new entry to the broad field of quantum error correcting (QEC) codes i.e. systems
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into which quantum information may be encoded, in a manner that is robust to imperfections and

noise. It differs crucially, however, from standard QEC codes in d ≤ 3 in that the error correction

only involves feedback that is local in space and time. On the other hand, it may be viewed as an

extension of certain results in classical cellular automata (notably the Toom and Gacs automata),

to the quantum regime. It is the latter perspective from which I will approach the authors result.

Suppose one wished to robustly encode a single bit of classical information into a classical

many body system. The simplest solution would be to take the classical many body system to

be an Ising ferromagnet, the magnetization of which corresponds to the classical bit. As long as

there are two degenerate ‘equilibrium’ states, the Ising ferromagnet can function as a ‘classical

memory.’ For a system in d = 2, this ‘classical memory’ will even survive weak thermal noise

(because the Ising ferromagnet survives to non-zero temperature), but it will not survive application

of a longitudinal magnetic field (equivalently, biased noise), since any magnetic field will lead to

there being only one equilibrium state. Thus, the Ising ferromagnet can serve as a good classical

memory only if we impose a global Ising symmetry. If we upgrade from passive to active (but still

local) dynamics, we can get a classical memory that survives weak longitudinal field (biased noise),

as shown by Toom. The basic idea behind Toom’s protocol is to still encode the classical bit into

the global magnetization, and to use a version of ‘local majority vote’ to correct errors introduced

by noise. Now, the problem with a simple ‘majority vote’ protocol is that if you get domains in

your system, then majority vote across the domain wall is inconclusive. Toom solves this problem

using a simple geometric observation - namely that the minority domain must have convex corners.

Accordingly, any time you encounter a convex corner you can just shrink the domain that has

the convex corner, and iterating this process eliminates minority domains. The resulting active

dynamics has two possible steady states even in the presence of weak biased noise, and can thus

serve as a good classical memory, robust to arbitary noise (without symmetry restriction)

The (hard to understand but believed to be true) results of Gacs (see also GacsII) can be under-

stood as a massive generalization of the Toom automaton to one spatial dimension. They consider a

one dimensional local active dynamics, which preserves an extensive number of bits of information

in local observables for infinite times, robust to weak but arbitrary noise. This is particularly strik-

ing since under passive local dynamics, one dimensional systems cannot even preserve a single bit

of information in the presence of noise, even with imposed symmetries - the one dimensional Ising
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model has only one possible equilibrium state at non-zero temperature. Nonetheless, the Gacs

automaton (active local dynamics in one dimension) has O(L) possible steady states, which differ

in their observable properties in a manner robust to arbitrary weak noise. Whatever definition one

prefers for phases of classical non-equilibrium matter, the Gacs automaton should certainly count.

Can we have a quantum generalization of the Toom and Gacs automata? That is, can we have

a quantum active dynamics, in a physically reasonable number of dimensions, into which we can

encode quantum information (both bit and phase) in a manner robust to arbitrary weak noise? And

can we do it in a way that does not require feedback that is nonlocal in space and time? The

recommended paper answers this question in the affirmative. To do so, it leans on a previously

obscure classical construction named the Tsirelson automaton. The Tsirelson automaton works in

one spatial dimension, and starts in the same place as the above mentioned Toom automaton - by

encoding the classical information into the magnetization of an Ising ferromagnet, and correcting

errors introduced by noise using a ‘majority vote’ type of procedure. However, it deals with the

problem of minority domains differently to Toom. Namely, it deals with minority domains using

a ‘divide and conquer’ strategy. First, one blocks the system into spatially contiguous regions on

which one applies majority vote. Then, each ‘block’ is carved up into smaller pieces, with are

redistributed through the system (see Fig.1). This process is iterated. Eventually, any minority

domain gets chopped up and redistributed into small enough pieces, to be correctable via local

majority vote.

In the recommended paper, Balasubramanian, Davydova and Lake take inspiration from the

Tsirelson classical automaton (above) to design an active quantum dynamics that can preserve

quantum information using only feedback that is local in space and time. Their construction is

based on the well known ‘two dimensional toric code.’ The two dimensional toric code has point-

like excitations, the proliferation of which can cause logical errors. This problem can famously be

‘solved’ by going to four spatial dimensions, whereupon the pointlike excitations get replaced by

loops, which need to grow to be of order system size in order to cause logical errors. The recom-

mended paper shows how the problem can also be solved in physically reasonable dimensions, by

replacing passive by active (still local) dynamics.

Two versions are presented. First a construction is presented in strictly two dimensions. The

dynamics in this case is ‘hard wired’ and not translationally invariant in time - an initial state
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Fig. 1: The evolution of an input state with randomly chosen damage under a noise-free
level-2 error correction gadget Z2. As in other figures, time goes from bottom to top. White
squares represent 0 and and gray squares represent 1.

Assuming a local p-bounded error model where the noise is supported on bits (this noise
model will be discussed more formally a bit later), Tsirelson [19] proved a stronger version
of the following statement (it suffices to have this weaker result for our purposes):

Theorem 2.1 (Tsirelson [19]). Denote si(t) to be the value of the ith bit after T repetitions
of Tsirelson’s automaton applied to the initial state si(0) = 18 i. Then under a p-bounded
noise model, provided p is smaller than some value pc

P (D(s(T )) = 1) � 1 � T · exp
�
�↵L�

�
(2.7)

for positive constants ↵ and �.

By symmetry, this also holds if the initial state is si(0) = 0. This implies that Tsirelson’s
automaton can remember a bit of information for infinite time in the limit L ! 1.
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Figure 1: Figure taken from the recommended paper, illustrating the circuit realizing Tsirelson?s

automaton. The time direction points up. The minority domain corresponds to cells shaded in

gray. Here, information is encoded into the magnetization of a one dimensional Ising system. The

dynamics involves a sequential ‘majority vote’ on local regions, followed by a carving up and

redistribution of said regions. Iterating this process produces an active dynamics that is capable

of correcting minority domains, and thus can encode information robustly to weak noise without

demanding any symmetry.
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corresponding to a two dimenisonal toric code is taken, and then a particular active local dynamics

is applied, which is shown to be capable of preserving two qubits of quantum information (on a

torus), robust to arbitrary noise. The necessary operations are allowed to be faulty (as long as

the error rates are low enough). Next, an extension to three dimensions is presented, which can

preserve L qubits of information (L being in the number of layers), and with a dynamics which

is translation invariant in time (but not space). Essentially, the information is shuttled between

layers in such a way as to reproduce the (non-time-translation-invariant) dynamics in the pure-

two dimensional construction. The constructions presented here constitute examples of absolutely

stable quantum memories, robust to arbitrary noise, and employing only feedback that is local

in both space and time, in a physically reasonable number of dimensions (d ≤ 3). I believe

they should be considered a new type of non-equilibrium quantum phase of (active) matter. It

seems clear that this construction should be extendable to other topologically ordered phases, and

probably also to fracton phases. Whether any surprises are encountered in the process remains to be

determined. More broadly, the recommended manuscript constitutes a new front in the exploration

of ‘interactively operated’ many body quantum systems, this time with the crucial addition of

geometric locality. It seems likely that there is much more to be done in this direction.
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