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Field theory is a common language for describing many-body systems that arise in particle
physics, condensed matter, and statistical mechanics, and often allows ideas to be transferred
fruitfully between these subdisciplines. This is particularly salient in the study of classical
and quantum magnetism, where low-energy, long-wavelength theories for coarse-grained or-
der parameter fields in space-time often take the form of “nonlinear sigma models” (NLSMs),
that are familiar from particle physics and string theory. A textbook [1] example is furnished
by the bipartite Heisenberg antiferromagnet, where the order parameter — the Néel vector
— describes the difference in magnetization between the two sublattices, n = 1

2
(m1 −m2).

The corresponding continuum field theory has the form of an NLSM for a vector n ∈ S2:

L =
ρ

2
∂tn · ∂tn− J

2
∂in · ∂in, (1)

where the nonlinearity stems from the constraint n ·n = 1 required by the O(3) symmetry.
Eq. (1) can be obtained formally via a semiclassical path-integral treatment of quantum
spins S with local Heisenberg exchange, where the small parameter is 1/S [2].

A key use of the NLSM is to understand the spontaneous breaking of the global sym-
metry, and to organize the resulting spectrum of gapless Goldstone modes. For the Néel
antiferromagnet, where the spins are collinear, the story is well-known: there are two Gold-
stone modes, or magnons, with identical speeds, and both the counting and the degenerate
dispersion can be viewed as a consequence of the unbroken symmetry of rotation about the
collinear axis. Richer behaviour can occur in systems where lattice geometry frustrates Néel
order in favor of more complicated configurations. A case in point is the triangular lattice
Heisenberg model, where the (semiclassical) ground state configuration is non-collinear and
involves three sublattices. In this case, there is no obvious residual symmetry, suggesting
there should be three Goldstone modes all with independent speeds. As it turns out, while
the counting is correct, two of the three modes are degenerate. Rationalizing this subtle
feature is the central focus of the recommended paper, and involves teasing out a “hidden
symmetry” via clever methods that might find purchase on a wider array of problems.
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Before proceeding to the more challenging three-sublattice problem, let us first exam-
ine the relatively familiar two-sublattice antiferromagnet in some more detail. The ground
state Néel vector n0 is uniform in real space and points in an arbitrary direction in three-
dimensional spin space, spontaneously breaking the global SO(3) symmetry of Eq. (1) down
to SO(2), corresponding to rotations around n0. A standard calculation reveals a pair of
magnons corresponding to small transverse deviations of the spin order parameter from n0.
Since the ground state breaks the symmetry associated to two of the three SO(3) generators,
we expect two Goldstone modes [3]. The residual SO(2) symmetry of rotations about n0

plays two important roles in organizing these modes: on the one hand, it ensures that the
two modes have identical speeds; on the other, it allows one to ascribe quantum numbers,
termed “helicities” — given by the projection of the spin along n0 — to their quanta.

As mentioned earlier, the ground state of the triangular Heisenberg antiferromagnet
appears to fully break the SO(3) symmetry, and indeed a standard spin-wave calculation
finds three gapless Goldstone modes in the spectrum as expected from this. Since there is no
apparent residual symmetry, one might expect that there is neither any particular degeneracy
in the mode speeds, nor a sensible quantum number to label them. Remarkably, two of the
three modes have an identical dispersion, suggesting that there is something missing in the
conventional treatment.

To understand what is going on, we need to think harder about the nature of the cor-
responding NLSM. For the case at hand, the magnetic order parameter can be captured by
a triplet of unit vectors {m1,m2,m3}, each pointing in the direction of the magnetization
on one of the three sublattices. This triplet can be rotated collectively without altering the
internal structure — exactly as for a rigid body. Since the orientation of a rigid body can be
parametrized as an SO(3) rotation matrix Oab, one way to describe this problem is in terms
of an NLSM for such matrices [5].

Two of the present authors recently proposed an elegant alternative, in terms of a “spin
frame” consisting of two linear combinations of ma and their cross product:

nx =
(m2 −m1)√

3
; ny =

(2m3 −m2 −m1)

3
;

nz = nx × ny =
2

3
√
3
(m1 ×m2 +m2 ×m3 +m3 ×m1). (2)

In the ground state where m1 +m2 +m3 = 0, the na form an orthonormal set; longwave-
length fluctuations are then described by a NLSM for the spin-frame fields: upto topological
terms, we have

L =
ρ

4

∑
a=x,y,z

∂tna · ∂tna −
µ

2

∑
i,j=x,y

∂inj · ∂inj (3)

note the anisotropy between z and x, y. A detailed calculation of fluctuations around a
broken symmetry state {n0

x,n
0
y,n

0
z} in Eq. (3) reveals the aforementioned surprise: the

existence of three modes, two of which have the same dispersion due to an SO(2) symmetry
of the low-energy Goldstone action.

An important clue is gleaned by examining the relationship between the spin frame
and the SO(3) rotation matrix formulations, which are ultimately equivalent. This can be
done by introducing a global frame {ex, ey, ez}, and writing nb = eaOab, or equivalently,
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ea = Oabnb. One can view the two triples {ea} and {nb} as corresponding to the two ways of
parametrizing a general SO(3) rotation matrix: either through a series of extrinsic rotations
about axes fixed in the global coordinate system {ea}, or via intrinsic or “Euler” rotations
about body-fixed axes {nb}.

The rotation matrix O captures the relative orientation between the frames: we can write

Oab = ea · nb, (4)

so that the bth column of O contains the components of nb in the global frame, while the ath
row of O contains the components of ea in the body frame, respectively: in equations, (nb)a =
ea · nb = (ea)b. Since an extrinsic rotation described by a rotation matrix L ∈ SO(3) is
defined with respect to the global frame, it transforms the body-fixed vectors componentwise,
(nb)a 7→ Lac(nb)c. Conversely, an intrinsic rotation described by a rotation matrix R ∈
SO(3) defined with respect to the body-fixed frame transforms the global basis vectors as
(ea)b 7→ Rbc(ea)c. The action of extrinsic and intrinsic rotations is more transparently
written in terms of O, where they respectively correspond to left and right multiplication;
they therefore commute with each other, and can act simultaneously, viz.

O 7→ LORT . (5)

The relevant symmetry of O under these transformations is that of the chiral group G =
SO(3)L × SO(3)R (named in analogy to the chiral group in particle physics, rather than
because there is any intrinsic handedness present). Technically, the discussion above makes
no use of the specific energetics of the microscopic theory; it turns out the symmetry of the
triangular Heisenberg antiferromagnet is slightly lower, but it is useful to proceed assuming
the higher symmetry.

Identifying this enhanced “two-sided” action of symmetries in noncollinear antiferromag-
nets is a central insight of the work [6]. Much of the balance of the paper flows smoothly from
it. An elegant trick is to use the isomorphism between the Lie algebras of SO(3) × SO(3)
and SO(4) (familiar to anyone who has worked through Pauli’s solution of the hydrogen
spectrum [7]) to move to a description in terms of an NLSM in terms of an O(4) order pa-
rameter unit vector q ∈ S3 (with antipodal points identified). While the direct transcription
of Eq. (3) in terms of q has lower symmetry (reflecting the fact that the actual symme-
try in the triangular Heisenberg magnet symmetry is not quite SO(3)L × SO(3)R but is
somewhat smaller), an initial simplification is to consider a fully SO(4) symmetric problem,
corresponding to what is known as the principal chiral model (PCM) [8].

Within the PCM, rather than working with the ‘left’ and ‘right’ symmetries SO(3)L,R,
it turns out to be more natural to work with the ‘vector’ and ‘axial’ components of the
chiral group, SO(3)V = SO(3)L × SO(3)R=L−1 and SO(3)A = SO(3)L × SO(3)R=L. The
broken symmetry ground state breaks G = SO(3)L × SO(3)R down to SO(3)V ; in the
matrix representation, such transformations correspond to O 7→ LOL−1, which describes the
residual symmetry. Since SO(3)A is fully broken, we recover the correct count of 3 Goldstone
modes, but the SO(3)V now constrains all these three to have identical speeds, and permits
a labelling in terms of “isospin” quantum numbers, −1, 0, 1 (in units of ℏ) corresponding to
the eigenvalue of a single component of the isospin.

The enhanced symmetry of the PCM corresponds to a freedom to choose the isospin
axis, which is the physical origin of the Goldstone mode degeneracy. In the original physical
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problem — the triangular Heisenberg model — L in is only invariant under rotations about
nz, so that the SO(3)R symmetry of body-center axis rotations is reduced to SO(2)R,3

corresponding to rotations about the third body-fixed axis. This translates into a reduced
SO(2)V,3 ⊂ SO(3)V residual symmetry, corresponding to matrix conjugation by an axis
perpendicular to the spin plane in the ground state (and hinting at the importance of co-
planarity to the Goldstone description). In more physical terms, the emergent symmetry is
a specific combination of joint rotations about the global axis ez and the local spin-frame
axis nz. As a consequence of this symmetry structure, the Goldstone branches exhibit lower
symmetry than the PCM with only two of the three modes having the same speed. The
SO(2)V,3 invariant Goldstone modes correspond to circularly polarized magnons, that form
a ±1 isospin doublet upon quantization [11].

The approach developed by the authors thus resolves the immediate puzzle of the tri-
angular Heisenberg antiferromagnet while also introducing an elegant new framework for
exploring other frustrated magnetic systems using field-theoretic tools. It is not too diffi-
cult to imagine a wide range of applications to other more complex orders, including those
that are non-coplanar, even to systems that exhibit a greater degree of frustration (e.g. the
famed kagomé Heisenberg antiferromagnet) or involve quenched disorder (e.g., spin glasses).
In such cases, understanding the connection to hydrodynamic approaches [9, 10] may offer
further insight. Overarching lessons from this work are that beautiful surprises remain in
even as well-trodden a subject as symmetry breaking, and that models devised with very
different motivations in the particle physics setting continue to find fruitful application to
concrete problems of condensed matter.

The correspondent would like to dedicate this commentary to the memory of Prof. Assa
Auerbach, from whose classic book he first learnt many aspects of quantum magnetism, and
who passed away suddenly earlier this year.
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