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General background— Slow dynamics and the failure of many-body systems to equilibrate
present a perennial challenge to many body physics. These appear in many guises: jam-
ming, glasses, spin glasses, many-body localisation. The relationship between these (and
in some instances, their very existence) are not entirely clear. At the same time, the scales
involved in terminating any transient behaviour realising these phenomena can be astronom-
ical, so that the capacity of numerics to provide definitive answers can be limited, and at
any rate, timescales in experiment such as the lifetime of the system under consideration (or
indeed, that of the research grant) or the patience of a graduate student can be considerably
shorter than any crossover time. All the more, these are well-studied problems, and much
experimental effort has been devoted to them.

A theoretical connection between spin glasses and error correction was already made
long ago [1, 2, 3]. The motivation for studying such systems now is perhaps as big as it
has ever been. In particular, there is massive interest in the context of the need to error-
correct quantum computational devices in order to reach an error threshold of collective
logical qubits which appears unattainable for individual physical qubits. In this context,
low density parity check (LDPC) codes are playing an important role. (Kitaev’s toric code
perhaps is the instance of an LDPC code most familiar to the quantum many-body physics
community).

The (spin) glass literature may not be the most easily penetrable to the newcomer, in
part due to the heterogeneity of phenomena, models, and descriptive frameworks. Spin glass
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models do come in several flavours, with salient differences in their degree of locality. This in-
cludes the completely non-local random energy model [4] with a number of random couplings
growing exponentially with the number of degrees of freedom; the celebrated Sherrington-
Kirkpatrick spin glass with infinite range pair-wise interactions [5], and its cousin, the p-spin
glass [6] where either all, or a set of randomly chosen ‘dilute’, groups of p spins interact
with one another. The Edwards-Anderson spin glass model with disordered purely nearest-
neighbour couplings on a d-dimensional lattice is the version with the most local interactions
[7].

Figure 1: Expander graphs: locally
tree-like graph (left) and hypberolic
tesselation (right).

From these studies, it is clear that dimension-
ality plays an important role: the Sherrington-
Kirkpatrick model can be solved exactly and ex-
hibits features (replica symmetry breaking) which
may or may not persist to low dimension. The fact
that the EA low-temperature phase is also called a
spin glass does not necessarily imply it has the same
properties as the SK one.

The highlighted preprints grow out of this inter-
est in studying dense and robust encoding of infor-
mation. In statistical physics language, what one
is after in an efficient code is a Hamiltonian defin-
ing an energy landscape that has a large number of
global minima (the code words) separated by high energy barriers (to avoid fluctuations
of whatever origin inducing transitions between them) surmounting which requires a large
number of spin flips .

For a given spin model/code, the quantities representing these properties are collated
in a triplet of numbers [n, k, d]: n is the number of degrees of freedom (spins/(qu)bits) of
the system under consideration; 2k is the number of ground states/code words, amounting
to k bits of information; and, crucially, the distance d is the minimal number of degrees of
freedom that need to be flipped to move from one ground state to another.

Classical glassiness— Now, in finite dimensional systems with short-range interactions,
one cannot arrange both a finite ratio of encoded information density, k/n, and a distance d
which diverges with n. A way to realise these desiderata togther is to use expander graphs.
Their definition is, loosely speaking, that any piece cut out of an expander graph has a surface
of comparable size to its volume: for any (sufficiently small) subgraph of an expander, the
number of neighbours outside the subgraph is proportional to the number of sites inside it.
This makes expanders ‘infinite-dimensional’ objects, as by contrast, the ratio of the surface
of a finite dimensional hypercube to its volume is ∼ Ld−1/Ld → 0 for L → ∞.

Expander graphs come in various familiar forms, Fig. 1, including locally tree-like graphs
(such as Erdos-Renyi or regular random graphs), or tesselations of hyperbolic plane. Most
readers will be familiar with issues such as the absence of gapless Goldstone modes on these
graphs, or the intricacies of distinguishing between Cayley trees and Bethe lattices on account
of the influence of boundary conditions on their bulk properties.

Low-density parity-check codes (LDPC) which take centre stage in the highlighted works
are basically Ising models with an extensive number of terms involving products of several
spins,

∏
i∈Cα

σi. The sets Cα define the expander interaction (hyper-)graph, with each Cα
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connected to its σi, and each σi connected to the Cα of the checks it appears in. The
abovementioned diluted (i.e., not all p-tuples appear in the Hamiltonian) p-spin glass with
’ferromagnetic’ couplings is an instance of an LDPC.

Figure 2: Energy landscape around one code-word (one of
the global minima) of an LDPC.

The LDPC can be treated
efficiently numerically, allow-
ing for numerics up to tens
of thousands of spins in this
work. But its main attrac-
tion is that this work provides
rigorous statements about the
statistical mechanics of such
models, which is often not
easy for glassy systems.

In particular, the work
identifies LDPC codes/diluted
p-spin glasses with a suffi-
ciently high value of p (and
other conditions detailed in
the work) as having the properties sketched Fig. 3. There are extensively (a number ex-
ponential in system size n) many global ground states. These have extensively high energy
barriers between them. In addition, further local minima exist, both at non-zero energy but
vanishing energy density, and at non-zero energy density. The latter come with lower but still
extensive energy barriers. It is shown that the energy barriers ‘survive’ to become extensive
free energy barriers between Gibbs states at finite temperatures. This can then be used to
show that at sufficiently low temperature, the system spontaneously chooses to enter one of
the exponentially numerous Gibbs states corresponding to the local and global minima, and
thus enters a glassy phase. This phase is essentially the one familiar from one-step replica
symmetry breaking, in the language of which many similar results have been obtained with
a lower level of rigour.

Topological quantum glassiness— The other highlighted work, on quantum spin glasses,
identifies a route from this classical energy landscape into a quantum version of glassiness.
This result is then directly relevant to the question whether a quantum LDPC can encode a
finite density of information robustly. This work proceeds in several steps, and the following
gives a brief outline of the central ingredients.

First, to turn a classical into a quantum LDPC, one now employs terms like the above∏
i∈Cα

σi containing different spin components. This idea will be familiar from the case of
Kitaev’s toric code, with its product of the four σz’s around a square plaquette (so-called
Z-stabilisers), and the four σx’s emanating from a site of the square lattice (X-stabilisers).
However, the generalisation of this construction to an expander setting is not purely me-
chanical, i.e. one does not simply add identical/similar terms in X- and Z-bases. Rather, one
takes a pair of classical codes described above and forms a so-called hypergraph product out
of these [8], as sketched impressionalistically in Fig. 3. Such a construction then ensures the
existence of an extensive number of global minima, just as above, with a code distance and
energy barriers growing as d ∼

√
n (rather than n as in the above classical model).

3



Figure 3: Right: Energy landscape of glasses based on classical and
quantum LDPC. Left: interaction hypergraph of classical LDPC (top)
and quantum LDPC, the latter arising as a Cartesian (or box) product
of two classical LDPCs.

The properties
of the quantum ground
states are remark-
able in that they
express what may
be termed a form of
topological order–
all of them exhibit
long-range entan-
glement. That is
to say that, like the
case of the ground
states of the toric
code, the ground
states are locally
indistinguishable and
can only be con-
structed from a prod-
uct state by a quan-
tum circuit of depth
at least log d. In
this sense, a quan-
tum code constructed

from the ground states of these quantum LDPC incorporates the idea of topologically pro-
tected quantum information. In addition, the authors show that the local minima described
above evolve into Gibbs states which exhibit at least some degree of long-range entangle-
ment, i.e. none of these Gibbs states can be represented by a mixed states of short-range
entangled states either.

Unlike in the case of simple transverse field Ising models, these ground states are therefore
‘not just’ relatively simple zero temperature extensions of classical spin states. Rather, their
long-range entanglement is a constitutive feature, as reflected in the moniker ‘topological
quantum spin glass’.

I hope this commentary has managed to illustrate how the reinvigorated confluence of
information theory and statistical mechanics can lead to interesting developments, which are
a long way from having run their course.
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