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The celebrated Laughlin [1] wavefunction in a magnetic field B (e = ℏ = 1)

Ψ(r1, r2, . . . , rN) =
∏
i<j

(zi − zj)
m
∏
i

e−
1
4
B|ri|2 , zi ≡ xi + iyi (1)

describes incompressible fractional quantum Hall fluids at filling fraction ν = 1/m of the
lowest Landau level. Yet, as Laughlin himself noted, for sufficiently low electron densities
(ν ≲ 1/70), this same wavefunction ceases to describe a liquid and instead describes a
crystalline state. This crystallization is not the familiar Wigner crystal of a dilute electron
gas, but rather an intrinsic property of Eq 1. In practice, this critical density is so small as
to be irrelevant, and the Laughlin state is often regarded as synonymous with the fractional
quantum Hall effect.

The highlighted paper points out that this critical density can, under certain conditions,
be dramatically enhanced — so much so that even the beloved ν = 1/3 Laughlin state could
freeze. The resulting state describes not a Wigner crystal, but something much stranger.
Such conditions may be relevant to two-dimensional material platforms where flat Chern
bands are realized.

The plasma analogy. To understand why Eq 1 might freeze, the wavefunction ampli-
tude |Ψ({ri})|2 ∝ e−βU({ri}) can be interpreted as the Boltzmann weight of a classical 2D
system of N particles at inverse temperature β = 2m, with a potential

U({ri}) = −
∑
i<j

log |ri − rj|+
B

4m

∑
i

|ri|2 (2)

which describes N particles of charge Q = −1, interacting via a Coulomb interaction (log-
arithmic in 2D), on top of a uniform background of charge density ρ = B/(2πm). This
classical model, known as the one-component plasma, has been studied in great detail: it
forms a fluid at high temperatures, but freezes to a hexagonal crystal when the dimensionless
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parameter βQ2 = 2m exceeds a critical value ∼ 140. Since all correlation functions com-
putable from |Ψ|2 coincide with those of the plasma, the Laughlin state itself must describe
a crystal when m ≳ 70.

Aharonov-Casher bands. Rather than conventional Landau levels, the highlighted
paper examines Aharonov-Casher, or “ideal”, Chern bands. As first shown by Aharonov
and Casher [2], Dirac electrons in a spatially inhomogeneous magnetic field B(r) always
possess an exactly flat zero-energy band. There is an intuitive picture for this: since a Dirac
fermion in a uniform magnetic field has an exact n = 0 Landau level that is pinned at exactly
E = 0 for all B, it makes sense that E = 0 modes persist even in an inhomogeneous B(r).
These bands can be understood as generalized lowest Landau levels: they share much of the
same structure and also admit analytic Laughlin states. The analog of the Laughlin state in
an Aharonov-Casher band is simply

Ψ({ri}) =
∏
i<j

(zi − zj)
m
∏
i

e−ϕ(ri) (3)

where ϕ(r) satisfies ∇2ϕ(r) = B(r). For the case of a uniform field B(r) = B, the choice
ϕ(r) = B

4
|r|2 reproduces Eq 1.

For a spatially periodic magnetic field B(r) = B + δB(r), where B > 0 is a uniform
component and δB(r) averages to zero, we can write ϕ(r) = B

4
|r|2+δϕ(r), with δϕ(r) being

a periodic function of position. Applying the plasma analogy to Eq 3 results in

U({ri}) = −
∑
i<j

log |ri − rj|+
B

4m

∑
i

|ri|2 +
∑
i

δϕ(ri)

m
(4)

which is describes the same plasma as before, but in the presence of a periodic scalar potential
δϕ(r)/m. The periodic potential can be understood as arising from a non-uniformity in the
background charge density, ρ(r) = ρ+ δB(r)/(2πm).

Adding a periodic potential will affect the freezing transition of the plasma. When the
δϕ(r) is commensurate with the crystal, it acts as a pinning field that favors the crystalline
order, increasing the critical temperature. It stands to reason, then, that the freezing transi-
tion of the Laughlin state can occur at much higher filling fractions compared to the uniform
case. This is precisely the observation made in the highlighted paper.

Interest in Aharonov-Casher bands has revived in recent years due to their connection
to (zero magnetic field) Chern bands in moiré systems. They appear to be ubiquitous in
idealized limits of moiré continuum models, including twisted graphene, twisted MoTe2, and
also rhombohedral graphene. In all these systems, an effective magnetic field emerges with
one flux quantum per moiré unit cell. These emergent magnetic fields can be extremely
inhomogeneous.

The paper. The highlighted paper considers a somewhat simpler setup. Rather than
having 1 flux quantum and 1/m particle per unit cell, as in the case of real moiré models,
they consider a unit cell that contains m flux quanta and 1 particle. Technically, this means
choosing a magnetic field configuration B(r) that is different for each m. This leads to
a simpler picture in the plasma analogy since the number of particles per unit cell is m-
independent, and from which the authors can leverage prior studies of 2D classical plasma
models.
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Figure 1: Magnetic field configuration, corre-
sponding to a plasma model in an array of 2D
Thomson atoms.

Specifically, they considerB(r) such that
the plasma model describes particles mov-
ing on top of an array of classical “Thomson
atoms” — uniform discs of constant charge
density (Fig. 1) also known as “plum pud-
ding” atoms. Since there is one particle per
unit cell, the plasma in this case does not ac-
tually crystallize in the sense discussed ear-
lier. Nevertheless, there is still a phase tran-
sition from a fluid (plasma) at high temper-
atures to a “dielectric” as temperature is de-
creased. Here, dielectric refers to a state in
which each particle is bound to its own Thomson atom: it behaves as a conventional di-
electric material. The critical temperature for this transition depends on the ratio of the
radius of the Thomson atoms, σ, to their interatomic spacing, a. As the atoms become more
point-like (σ/a → 0), the critical temperature can increase up to the point that even the
ν = 1/3 Laughlin state sits in the dielectric phase! This happens already for σ/a ≈ 0.5,
when the Thomson atoms are just barely touching.

What happens to the Laughlin state when, according to the plasma analogy, it is a di-
electric? Well, one thing is for certain: it does not describe the same fractional quantum
Hall effect. The signature of the ν = 1/m fractional quantum Hall state is the existence of
excitations with fractional charge e/m. To show this, Laughlin used the “perfect screening”
condition of the plasma. A dielectric, however, does not fully screen! If ϵ is the dielectric con-
stant of the classical Thomson atom array, then the effective charge of a Laughlin quasihole
is

qqh = (1− 1/ϵ)
e

m
(5)

which need not be a rational fraction of e.
As the highlighted paper shows, the Laughlin dielectric exhibits power-law correlations

with an exponent that depends continuously on σ/a. The power-law correlations implies
that any Hamiltonian for which Eq 3 is the exact zero-energy ground state (which can
be constructed using pseudopotentials) must be gapless. Since no continuous symmetry is
broken in this case, this gaplessness does not appear to be a simple consequence of Goldstone
theorem.

Final thoughts. To what degree is this physics relevant to real moiré systems? These
systems tend to have very inhomogeneous effective magnetic fields, which is reflected in their
real-space charge density (twisted bilayer graphene, for instance, has charge density concen-
trated at the AA sites). In reality, though, these Chern bands are not perfect Aharonov-
Casher bands and, even if they were, the Coulomb ground state is not exactly the Laughlin
state.

We often think of the Laughlin state as the solvable “fixed point” of a larger fractional
quantum Hall phase. In an Aharonov-Casher band, can the fractional quantum Hall phase
exist without a Laughlin fixed point?
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