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Thrifty self-assembly
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Building machines at the nanoscale is unlike building a wind turbine. Whether the process
is biological or artificial, it rarely involves an external operator grasping spare parts and
adjusting them into place. Instead, the subunits making up the final assembly are typically
delivered by Brownian motion. They come into contact through chance encounters, and stay
bound only if the interaction between them is attractive.

This so-called self-assembly process presents challenges and opportunities. Because of
the random nature of the encounters, any two particles that happen to attract may end up
sticking together even if that impedes the intended assembly. On the upside, clever designs
that disallow any spurious bonds can fully determine the final assembly simply by specifying
the types of subunits and their interactions.
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The simplest version of such a design is known as “fully
addressable” self-assembly [1, 2]. To illustrate the concept,
consider the task of engineering a square, two-dimensional as-
sembly comprised of four identically-sized square subunits. In
a fully addressable design, each of the four subunits is of a dif-
ferent type and equipped with completely specific interactions.
For instance, the right side of subunit A in the illustration can
only bind to the left side of subunit B, and its bottom side to the top of C. Its two remaining
sides cannot bind to anyone. This strategy rules out spurious binding, even in very compli-
cated designs. It is however difficult to implement using current experimental techniques –
notably the assembly of nanoparticles, colloids or DNA origami subunits interacting through
complementary strands of DNA. Indeed, producing many distinct subunits is costly, and im-
plementing an even larger number of mutually exclusive, fully specific interactions is also
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Figure 1: Three possible icosahedral shell designs. The leftmost shell is fully addressable:
no two subunits are identical and so all have different colors. The righmost shell is the
maximally economical design, which takes advantage of all 5-, 3- and 2-fold rotational axes
of the icosahedron (red, green and blue arrows) to minimize the number of subunit types,
and therefore of subunit colors. The middle shell shows an intermediate design which retains
only “safe” axes, i.e., those that do not go through a vertex.

challenging. These issues may be responsible for the rarity of fully addressable self-assembly
in biology. Instead, living cells often assemble their proteins into highly symmetrical com-
plexes [3]. This is analogous to making our big square out of four identical subunits of type
E, each with two mutually attractive sticky sides. Applying this strategy to highly symmet-
ric assemblies such as our big square is not only economical, but also speeds up self-assembly
as subunits need a shorter time to find a suitable interaction partner.

One might naively assume that identical particles should be used whenever two subunits
within the intended assembly are related by a symmetry operation, and only in those cases.
However, the two articles discussed in this commentary show that the potential of this
economical approach is both narrower and greater than this argument suggests. In the first
article, Tyukodi et al. demonstrate that not all symmetries are created equal, and that while
some can safely be taken advantage of, exploiting others makes for an error-prone assembly
process and should be avoided. By contrast, in the second article Hübl et al. show that
even subunits that are not related by symmetries can sometimes be safely identified without
decreasing the assembly yield.

Tyukodi et al. consider a task reminiscent of the assembly of a viral capsid, namely the
self-assembly of a closed shell out of triangular subunits. To perform it, viruses often use a
highly symmetric icosahedral design to maximize subunit economy [4]. One can in principle
design icosahedral shells comprising an arbitrarily large number N of subunits; taking full
advantage of their symmetries allows the use of as few as N/60 unique subunits [5]. As shown
in Fig. 1, in this design identical subunits are related by a rotation. Running numerical
simulations of the assembly process, the authors however show that two types of rotations
must be distinguished. Rotations whose axis runs through a vertex of the assembly are indeed
associated with a risk of off-target assembly. The reason why is shown at the bottom right of
Fig. 1, where five identically-colored triangular subunits join at their tips. As subunits come
together during the assembly process, such configurations run the risk of incorporating one
too few or one too many subunits. This results in a defective vertex with coordination 4 or
6, and ends up spoiling the rest of the assembly process. By contrast, rotation axes that run
through an edge (see Fig. 1) or the center of a triangle (not shown here) are incompatible
with such mistakes, and are thus safe to use. The authors then consider shells of increasing
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sizes, and ask in each case whether the rotation axes associated with icosahedral symmetry
are of the dangerous or of the safe type. They then compute how many distinct subunits and
interactions are required to assemble the shell based only on the safe rotations. They find
that the answer depends very sensitively and nontrivially on N . For instance, assembling
shells of size N = 960 or N = 1040 respectively requires 2880 and 1040 distinct interactions
between subunits, whereas 245 interactions are sufficient to successfully assemble a shell with
N = 980. This huge difference in self-assembly cost is likely to apply to more complicated
designs as well, and thus implies a broadly applicable, easily intelligible design guideline.

Unlike this first article, the second does not attempt to specify a single target assembly
by defining a set of subunits and interactions – a characterization in what Hübl et al. term
the “primary design space”. Instead, it discusses the magnitudes of the associated subunit
chemical potentials and bond strengths – coordinates in the “secondary design space”. They
show that setting these values can in some cases force an ambiguous design, i.e., one that is
a priori compatible with many target assemblies, to form a single final product with a very
high yield. To identify these cases, they denote by µα the chemical potential of the reservoir
of subunit α and by ϵi the energy of bond i. They then note that according to Boltzmann
statistics, the equilibrium concentration of an assembly s containing Nα copies of subunit α
and ni instances of bond i goes as

ρs ∝ exp

(∑
α

βµαNα +
∑
i

βϵini

)
= eβMs·ξ, (1)

where β−1 = kBT denotes the thermal energy. Here the vector Ms = (N1, N2, . . . , n1, n2, . . .)
characterizes the structure of assembly s, while ξ = (µ1, µ2, . . . , ϵ1, ϵ2, . . .) is a point in
secondary design space. The authors consider the equilibrium state of the system in the
presence of strong interactions, i.e., in the formal β → ∞ limit, and leave aside any question
of kinetic trapping or slow diffusion that might arise under such conditions. In that limit, the
concentration ρs can only remain finite if Ms ·ξ ≤ 0. In practice, any assembly that violates
this condition will form at a high rate, depleting the reservoirs of its constitutive monomers
and forcing their chemical potentials to decrease until the condition is met. The intersection
of all conditions Ms · ξ ≤ 0 associated will all possible assemblies s defines a polyhedron in
secondary design space (Fig. 2). Among the points of this polyhedron, those located on its
outer faces are the most interesting. Indeed, at these points Ms · ξ = 0 for only one species.
This implies that this species will be produced with a 100% yield in the β → ∞ limit. Not
all possible assemblies are however associated with a face of the polyhedron, and those that
are not can never be obtained with a high yield – they are not “designable”. This reframing
of the initial problem thus provides a geometric criterion to identify designable assemblies,
and the authors confirm the validity of this formulation in DNA origami experiments. This
result enables an intuitive, if abstract, understanding of subunit design, and an extreme
speed-up of its numerical treatment.

Although both articles discussed here are admittedly concerned with very simplified the-
oretical models, they address a crucial challenge that has emerged from the rapid progress of
self-assembly mediated by DNA interactions. Indeed, and despite the development of some
impressive platforms [6], producing a large enough number of distinct subunits and interac-
tions to enable fully addressable self-assembly remains impractical except in simple cases.
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Figure 2: Designable assemblies are associated with geometrical structures in secondary
design space. Left: A set of rules in primary design space specifying 4 subunit types (col-
ored triangles) and 5 interactions (black lines) between their sides. This specific set implies a
9-dimensional secondary design space composed of 4 chemical potentials and 5 interaction en-
ergies. It allows for the formation of 283 distinct assemblies. Right: Cartoon two-dimensional
cut of the secondary design space showing the polyhedral region (light blue) that satisfies
all Ms · ξ ≤ 0 constraints. Choosing the assembly parameters so that ξ lies on the red face
produces the corresponding structure with 100% yield in the β → ∞ limit. By contrast, the
assembly associated with the dashed line can never be assembled with 100% yield.

While many other studies propose algorithmic recipes to produce simplified, more manage-
able designs, the work of Tyukodi et al. and Hübl et al. stand out by putting forward simple
geometrical rules that govern these simplifications. The resulting designs remain challenging
to implement, meaning that they are probably not yet ripe for practical applications and
still need to be combined with other innovations. This, in my opinion, is what makes the
authors’ new insights so valuable. Indeed, their simplicity and interpretability implies that
they can be communicated to and appropriated by the rest of the community in a way that
no black box algorithm or machine learning procedure can. That gives them the potential
to be incorporated into new self-assembly frameworks in ways that likely neither the authors
nor I can foresee at this point in time.
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