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The title of the first paper intrigued me immediately. There is nothing particularly novel
in Hartree–Fock mean-field simulations; all algorithms follow the same steps:

1. Choose a mean-field Hamiltonian

2. Compute the density matrix of all occupied states

3. Iterate the above until free energy is minimized (or self-consistency is achieved)

The second step—obtaining the density matrix—requires computing a high-rank dense op-
erator. Such computations admit few optimizations. They cost O(N3) operations for N
orbitals and become highly impractical above N ∼ 104 degrees of freedom on modern hard-
ware. The paper, therefore, improves this result by an astounding amount: five orders of
magnitude. The second paper simulates the time evolution of the Gross–Pitaevskii equation
on a 106×106 grid. Although the Gross–Pitaevskii equation is not subject to the same cubic
scaling as the Hartree–Fock approximation, storing such a grid would require roughly 12
terabytes of memory—far more than most users have available.

The main algorithmic idea that both papers use is the quantics tensor train (QTT)
representation of the Hamiltonian, the wave function, and the density matrix. Long after
matrix product states became a standard tool for representing 1D interacting quantum sys-
tems, Oseledets and others (see e.g. Ref. [1]) introduced the compactification of large arrays
into tensor networks. After encoding matrix indices in binary, each index bit corresponds
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to a spin-1/2 degree of freedom: a matrix element becomes an amplitude for a particu-
lar configuration of these fictitious spins. Low-order (least significant) bits encode fine,
local position information, while high-order (most significant) bits encode coarse-grained,
large-scale position; correlations between different bit positions therefore map to correla-
tions between different spatial scales. Put differently, entanglement between high-order bits
captures long-wavelength (coarse) structure, whereas correlations among low-order bits de-
scribe short-range or high-frequency features. This is why a tensor-network approximation
of the spin wavefunction naturally implements a multiscale compression of the original ar-
ray, and why certain patterns of bit-to-bit coupling map onto correlations between ranges of
Fourier modes in the original system. Constructing a tensor network approximation of this
wave function provides an exponential compression of the original array, for a broad class
of practically relevant operators.∗ The QTT representation is a relatively recent idea with
applications to a variety of physical systems; after reading Ref. [2] I was tempted to rewrite
our numerical codes using tensor networks.

Constructing the QTT representation of the tight-binding mean-field Hamiltonian is di-
rect: the Hamiltonian terms are sparse, and QTT allows one to represent most position
dependencies compactly. The real challenge, and the key idea of the first paper, is the con-
struction of the density matrix. The authors use the kernel polynomial method [3]. Instead
of applying Chebyshev polynomials of the Hamiltonian H to a small set of random vectors,
they directly construct the QTT representation of each Chebyshev polynomial Tn(H) us-
ing the recurrence relation Tn+1(H) = 2HTn(H) − Tn−1(H). The density matrix is then
constructed approximately as a weighted sum of these polynomials, and the iteration to
self-consistency follows the standard approach.

The main caveat of the approach becomes apparent when we revisit the problem and the
physical phenomena we aim to capture. Specifically, for a simulation of 105 × 105 sites to be
useful, something nontrivial must occur at that scale; otherwise, one could simulate a much
smaller system and extrapolate the results, perhaps adding a smooth position dependence
by interpolating the local solutions. Another subtlety lies in the limitations of the kernel
polynomial method itself: computing the N -th Chebyshev polynomial of the Hamiltonian
only allows one to capture correlations up to distances ≲ N , and a much larger number of
moments is required to reach sufficient precision for those correlations. Finally, constructing
a fixed-rank QTT representation of Tn+1(H) from Tn(H) and Tn−1(H) invariably introduces
truncation errors; some correlations are neglected when the QTT bond dimension is fixed.
The paper’s analysis uses N = 250, which is much smaller than needed to capture relevant
long-range physics. Finally, Hubbard interactions, together with the nearsightedness prin-
ciple, typically lead to short-range correlations that are fully captured in smaller systems.
I hope that the authors address these open questions in future works and demonstrate the
performance of the method beyond proof of concept.

Despite these caveats, I find the algorithmic development worth very careful consider-
ation. Firstly, even if there is a clear scale separation between complex local physics and
emergent smooth long-range behavior, constructing a description that includes both—even
approximately—is a daunting task, and it is precisely the problem the QTT approach ad-

∗The vagueness of this formulation is intentional: I do not think we know what can and what cannot
allow for a low-rank tensor approximation
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dresses. Secondly, a broad class of physics problems—such as the Gross–Pitaevskii equation
studied in the second paper—naturally involve multiple scales, and the QTT approach ap-
pears well suited to them; it does not suffer from the error accumulation associated with se-
quential approximations. Even the question of approximating the density matrix in Hartree–
Fock simulations may find a solution in the QTT representation: its strength is the ability to
capture correlations across multiple scales. It may therefore be that alternative approaches
to constructing the QTT density matrix would lead to improved results. Ultimately, while it
is too early to draw firm conclusions, I find the application of tensor networks to large-scale
simulations an exciting development worth following closely.
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