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Background: A recurring conceptual question in quantum many-body physics is whether
matter at nonzero temperature is genuinely quantum, or whether thermal fluctuations in-
evitably wash quantum structure into something that is, at least effectively, classical.

Topological order helps sharpen this question. At zero temperature, topologically or-
dered phases are paradigmatic examples of nontrivial phases with long range entanglement.
Examples include fractional quantum Hall states and lattice models such as the toric code.
The defining features of these gapped quantum phases include ground-state degeneracy on
manifolds of nontrivial topology, and anyonic excitations. These features cannot be mim-
icked by any short-range-entangled (SRE) state - perhaps the most extreme example of a
SRE state is just a product state, where eg. qubits on a lattice are put into individual states
giving rise to a product state [¢)) = [],|¢:). More general SRE states are ‘close’ to such
product states.

But what about thermal states? Here one typically deals not with a pure state but with
a Gibbs density matrix py = e #. Are there phases in which the finite-temperature Gibbs
state is unavoidably long-range entangled (LRE)? This immediately raises a technical ques-
tion: how should we define long-range entanglement for mixed states, so as to meaningfully
distinguish “nontrivial” density matrices from those that are merely short-range entangled
(SRE)? Setting that question aside for the moment, and assuming we have a criterion that
separates LRE from SRE mixed states, the central question becomes: do there exist thermal
equilibrium states that are asymptotically distinct from all SRE states, in direct analogy
with zero-temperature topologically ordered phases? This issue is not only conceptually im-
portant; it is a necessary condition for realizing a truly self-correcting quantum memory, a
“quantum hard drive” that remains stable without active error correction.

Previous work painted a rather pessimistic picture for finite-temperature quantum topo-
logical order in physically realizable spatial dimensions (d < 3). While four-dimensional
models such as the 4D toric code can support finite-temperature quantum memory and
long-range entanglement in their thermal states, a combination of explicit constructions
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and no-go theorems has suggested that in 2D, and for broad classes of 3D models, ther-
mal topological order is either absent or effectively classical [1]. In particular, the 3D toric
code was shown to have nonzero-temperature thermal states that are SRE, even though
the model exhibits a finite-temperature phase transition. The transition separates a low
temperature phase with only few magnetic loop excitations from a high temperature phase
where they proliferate. This transition separates classical phases [2], rather than distinct
quantum-topologically ordered phases. *

The featured paper breaks this impasse. It answers the question “Can there be genuine
quantum topological order at finite temperature in three dimensions?” in the affirmative. In
does so by providing a concrete setting where finite-temperature equilibrium is provably
and robustly quantum in its global entanglement structure. The paper focuses on a three-
dimensional toric code, but with a literal twist. In 3D, the toric code comes in two variants -
the traditional (bosonic) and twisted (fermionic) toric codes - with the latter being the model
of interest here. It is defined on a cubic lattice with two-level systems (qubits) residing on
the edges, governed by the Hamiltonian:

H=-) A,-) B,
v p

where the terms are associated with vertices (v) and plaquettes (p) of the lattice. The vertex
term A, is simply the product of the Pauli operators * on the six edges adjacent to a vertex.
The plaquette terms are more complex for the fermionic toric code, (for the bosonic toric code
this is nothing but the product of the o* Pauli operators around the plaquette) but again
feature products of ¢* and ¢* on specific edges in the vicinity of a plaquette. Importantly,
all vertex and plaquette operators in the Hamiltonian commute with one another, allowing
for an exact solution. This model’s particle like ‘charge’ excitations are fermions, unlike the
bosons in the traditional 3D toric code, the model which was previously shown to be SRE
at any finite temperature. The reader is left to extract the details from the recommended
paper, but here are a few key physics points that should help demystify the proof.

The proof involves three steps. (i) The definition of SRE density matrices introduced
in [1] is quite natural, as an incoherent sum of SRE states, i.e. construct a density matrix
with states |[SRE;) with probability p;. (ii) The reference density matrix py is constructed
as follows - start with the thermal state of the fermionic toric code model which may be
viewed as a thermal soup of point ‘charges’ as well as closed loops. Now consider keeping the
first sector, the thermal gas of point charges, but completely eliminating the latter, namely
shrinking all loops to zero. This is the reference state py. A very simple argument suffices to
show that this state cannot be approximated by any psrg. One exploits the fact that there
are fermionic charges in the system and applies a series of unitary operations that isolates

*As a brief introduction to toric codes across dimensions: these models realize Zs topological order in
2D and 3D. They support a Zs-valued charge excitation e and a corresponding Z, flux excitation m, with
nontrivial mutual statistics: transporting e around m produces a 7 phase. In 2D, both e and m are point-like
anyons, and one can form their bound state ¢ = e x m, which has fermionic statistics. In this sense, 2D Z,
topological order does not sharply distinguish “bosonic” versus “fermionic” charge. In 3D, by contrast, the
flux becomes loop-like while the charge remains point-like, and the notion of a point-like bound state e x m
is no longer available. As a result, the statistics of the point charges themselves becomes a genuine invariant:
the bosonic and fermionic 3D toric codes correspond to distinct phases.
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Figure 1: (a) Phase diagram of 3D toric code as a function of temperature. At T,, loops
of magnetic flux proliferate. (b) The T-junction setup to extract exchange statistics, the
relative phase betweeen the sequence ACBED and AEBCD arises purely from exchange and
(c) the cleanup step that effectively removes magnetic loops. Figures (a)-(c) are taken from
Prof. Meng Cheng’s seminar.

the fermionic exchange statistics. The unitary ”string” operators that move the particles are
shown in Figure 1(b) (adapted from [3]). By applying the operators in Sequence-1, ACEBD
(i.e. A followed by C ... and ending with D) can be shown to interchange the two particles
1,2. On the other hand, the exact same set of steps in the Sequence-2, AEBCD, does no
interchange. Because the two processes are otherwise identical, and the particles are assumed
to remain well separated, all dynamical phases cancel. The only surviving distinction is a
relative minus sign of exchanging a pair of fermions. Such a relative phase for a sequence of
local string operators is incompatible with psrge. Thus, crudely speaking py # psre. This
intuition can be made precise in terms of the distance between the two kinds of density
matrices [4]. Finally, (iii) we need to decide if the thermal density matrix of the fermionic
toric code py is closer to psrg or to pg. This depends on the temperature which can be seen
by a ‘cleanup’ procedure or decoder, a unitary operation that cleans up loops in the thermal
state and makes it approach the py. Such a procedure should succeed as long as we are below
the finite temperature transition 7, in Figure 1(a). For technical reasons the current proof is
able to establish it upto a slightly lower temperature (Zgeanup ~ 0.957;) that depends on the
details of the cleanup procedure. Thus on proving that pg is close to pg and hence far from
psre one has established the existence of a thermal state that has long range entanglement.

tThe slight discrepancy between the two temperatures Teicanup and T, is believed to be an artifact of the
proof. An optimal decoder, which does the loop cleanup in the most efficient way, should place the boundary
between quantum and classical states precisely at the phase transition.
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Given the existence of a thermal quantum state one may hope this would be a candidate
for a thermal quantum memory which retains coherent quantum information at finite tem-
perature. Alas, this is not the case - like its bosonic counterpart the fermionic 3D toric code
can only encode a classical bit below the transition temperature, exemplifying that finite
temperature LRE is necessary but not sufficient for a thermal quantum memory.

Future directions and caveats: What I found appealing about this work is that it
highlights an important and surprising phenomenon, 3D finite temperature topological order,
hiding in plain sight within an extensively studied model-the fermionic toric code.

We close with a few remarks. (a) The proof hinges on a special symmetry of the model,
generated by loop operators (so called 2-form symmetry). Indeed, the result can be viewed
as a consequence of the anomalous (ultimately fermionic-statistics—related) character of this
symmetry. Generic models in the same phase do not possess such a microscopic symmetry.
An important open question is whether the result also holds if this symmetry emerges just
in the low-energy limit. (b) An important caveat is that the proof is formulated for a qubit
(spin) system—i.e., a purely bosonic microscopic model with no explicit fermionic degrees
of freedom, even if fermions can emerge effectively. If, instead, one introduces fermions
at the microscopic level, for instance by considering an underlying Hubbard model rather
than a purely spin model, these fermions interconvert the bosonic and fermionic toric codes
and thereby unwind the finite-temperature topology. (c) The proof implies that there is a
smoking gun measurement of fermionic statistics even in a finite temperature ensamble. It
would be valuable to sharpen this into an explicit experimental proposal-even a Gedanken
experiment-that makes concrete the formal exchange process illustrated in Fig. 2(b) and
isolates the exchange statistics of the excitations, for example via an interferometric protocol
in the spirit of Ref. [5]. *
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