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Elastic solids are stable against small deformations. The energy of these de-
formations is a positive, quadratic function of the displacements which however
is strictly zero for uniform displacements. Therefore, quasi-uniform displace-
ments, i.e. sound waves with large wavelengths λ, cost a small energy ∼ λ−2.
From the dispersion relation ω = 2πc/λ, where c is the speed of sound, and the
usual counting of modes in wavevector space, one easily finds that density of
vibration modes g(ω) is given by the Debye law g(ω) ∼ ω2.

There are many situations where the ”solid” under consideration is in fact
only barely stable. For example, if one compresses a gas of (quasi-)hard spheres
at zero temperature, there will be a density where the system jams and some
non zero elastic moduli appear. Right at the jamming transition, the number
of contacts is just sufficient to allow the system to be mechanically stable, at
situation called isostatic. Similarly, when a liquid is hyperquenched to very low
temperatures, it falls in locally stable configurations that are very far from ther-
mal equilibrium, but at least mechanically stable. More stable configurations
cannot be reached because barrier crossing is forbidden at these low tempera-
tures. In these situations, the relevant configurations are not the low energy
ones, but the first locally stable configurations reached by the dynamics. The
importance of these ”marginal” states has been pointed out by Shlomo Alexan-
der, Sam Edwards and many others, in particular in the context of granular
media. Similar ideas appear in the context of Coulomb glasses and the Efros-
Shklovskii gap [1] and of spin-glasses. For example, one can show analytically
that in some mean-field spin-glass models, the dynamics at low temperature dy-
namics drives the system to marginal states that can be viewed in energy space
either as minima with zero cost directions, or saddle points with a vanishing
number of unstable directions [2].

Therefore, quite generically, one expects these marginal states to have a
large number of low energy, ”soft” modes, vestiges of the unstable directions
that just became stable as the density increased, or as the energy decreased.
The argument developed by M. Wyart et al. shows that for an elastic solid
with a marginal number of contacts, the density of low-frequency modes is in
fact constant, g(ω) ∼ ω0, and therefore much larger than the Debye density
in a usual elastic solid. Their argument is variational: they construct trial
deformation modes with a bounded energy to obtain a lower bound on the
density of states. Physically, the reason for this huge number of modes is as
follows: if one removed all L2 contacts on a plane P cutting a system of size
L, L2 unstable modes would appear (since the original configuration had just
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enough contacts to be stable). Each one of these modes can be modulated in
space such as to have zero displacement on the plane P and approximate a
true low energy mode of the original (uncut) configuration. The modulation of
wavelength λ = L is easily shown to increase the energy of the phantom zero
mode by a quantity ∼ 1/L2, as in an elastic body. However, at variance with an
elastic body, there are now ∼ L2 modes of frequency ∼ 1/L, consistent with a
constant density of states at low frequencies. [Using a real-space renormalisation
group like argument, this result can then be extended up to frequencies of order
1, not only 1/L.] As the number of contacts is increased from criticality, a
characteristic length scale appears `∗; the system is marginal (isostatic) for
smaller length scales, and stable at larger length scales. Therefore, a plateau in
the density of states is expected for ω > ω∗ = c/`∗.

This finding is important because extremely generic; it might in particular
explain the ubiquitous ”Boson-peak” in glasses, which is an increased density
of vibrational states around a frequency in the THz region. Recent work by
the Parisi group [3] have indeed suggested that this increased density of states
is related to the proximity, in energy space, of a critical point where unstable
saddle points become stable minima, as predicted by the Mode-Coupling theory
of glasses. The geometrical, intuitive approach of M. Wyart et al. sheds a very
interesting light on this problem, and might allow one to understand the role
of pressure, cooling rate and aging effects on the height and frequency of the
Boson-peak. It also points out the existence of an important crossover length
in glasses and granular materials, below which the mechanical properties of the
structure is very far from that of a usual elastic body. This could be important
to understand, for example, the fracture properties of glasses [4].
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