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We all know that altering the dynamical rules governing the evolution of a statistical

system, while maintaining detailed balance with respect to the same equilibrium distribu-

tion, can alter dramatically the nature and rate of relaxation to thermal equilibrium. Rules

constrained by a conservation law lead generically to slower relaxation than nonconserving

kinetics [1], and nonlocal or multiparticle moves can speed up relaxation. It is neverthe-

less surprising when two nearly identical evolution equations, local, number-conserving and

relaxing to the same thermal equilibrium distribution, yield drastically different dynamics.

One dynamical rule, in standard approximate treatments, displays the mode-coupling glass

transition [2, 3], while Jacquin and van Wijland (hereafter JvW) show exactly that the other

leads to purely exponential relaxation at a rate inversely proportional to the structure fac-

tor, with no further enhancement of slowing down by nonlinearities. The same free-energy

functional characterizes the equilibrium in both cases, with an abundance of amorphous

metastable configurations. JvW’s treatment is technical, but their results merit the atten-

tion of anyone interested in the reasons behind the slow dynamics of dense, cool, classical

simple liquids.

JvW consider a a collection of Brownian particles at temperature T ≡ 1/β interacting

through an isotropic pair potential v(r) where r is the interparticle separation. They work

in terms of the number density field ρ = ρ0 + δρ(r), with mean ρ0. The probability of a

configuration ρ is ∝ exp(−βF [ρ]) where

βF [ρ] =

∫

r

[

ρ ln
ρ(r)

ρ0
− δρ(r)

]

+
1

2

∫

r,r′
δρ(r)v(|r− r′|)δρ(r′). (1)

The density functional F and its approximants contain the essential physics of the equilib-

rium phase transition from liquid to crystal [4]. Minimizing F yields ρ = ρ0 exp
∫

r
′
v(|r −

r′|)δρ(r′), a highly nonlinear integral equation whose solutions include crystalline states for

low enough T . The abundant occurrence of glassy minima in F is well established [5], es-

pecially in a description in which the negative of the direct pair correlation function c(r)
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stands in for v(r). This complex free-energy landscape, a static property, appears to be

mirrored consistently in the statistical dynamics [6] of ρ:

∂tρ = ∇ · (ρ∇δF/δρ) +∇ · (
√

2Tρf) (2)

with a spatiotemporally white, isotropic, unit strength vector noise f and the Itô interpre-

tation, obeys detailed balance with respect to the Gibbs measure exp(−βF ). Eq. (2) shows

a glass transition in a one-loop self-consistent treament known as mode-coupling [2, 3]. A

similar but seemingly simpler equation,

∂tρ = ∇ · (ρ0∇δF/δρ) +∇ · (
√

2Tρ0f), (3)

in the spirit of dynamical critical phenomena models [1], is obtained by replacing ρ by its

mean ρ0 at two crucial places in (2), resulting in a constant kinetic coefficient and an additive

noise. The strength of nonlinearities in (2) is governed by v(r) and the multiplicative noise,

and in (3) by the infinite set of coefficients in an expansion of ln ρ/ρ0. JvW focus their

attention on (3), introducing, as in [3], an intermediate field θ to stand in for the sum of

all terms beyond linear order in δρ in the chemical potential δF/δρ. Using the structure

of vertices in the action for the resulting field theory, they are able to show that the self-

energies that would renormalize the dynamics of the two-point space-time correlator of ρ

must be strictly zero at all orders in perturbation theory. The relaxation of ρ is determined

exactly by an effective linearized (3), with −v(r) replaced by c(r), with a relaxation time

∼ Sk/k
2 where Sk is the equilibrium static structure factor of ρ. On the other hand, we

know from work on the mode-coupling glass transition that model (2), with nearly the same

kinetics and exactly the same equilibrium distribution, has a far more complex relaxation

behaviour.

The findings of JvW leave us with a lesson, a technical issue, and a conceptual question.

The lesson: the mere existence of an exceedingly complex free-energy landscape need not

produce complex relaxation. The work underlines the value of deriving continuum stochastic

“hydrodynamic” theories by explicitly coarse-graining a microscopic description rather than

relying exclusively on considerations of symmetry and conservation, which in this case would

very likely miss the subtlety associated with the multiplicative noise. The technical issue:

the authors introduce an intermediate field θ obeying a nonpolynomial constraint, and then

proceed to obtain results at all orders in perturbation theory. How is this related to the
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problem in its original formulation without the auxiliary variable? The conceptual question:

why does (3) manage to relax so easily, unlike (2)? One possibility: the multiplicative noise

in (2) is ultimately [7] a result of the strictly non-negative nature of the underlying field ρ,

a sum of positive-weight Dirac delta-functions. Does the seemingly harmless modification

leading to (3) therefore allow an escape-route in which ρ sometimes gets negative?

[1] P.C. Hohenberg and B.I. Halperin, Rev. Mod. Phys. 49, 435 (1977).

[2] S.P. Das, Rev. Mod. Phys. 76, 785 (2004); D.R. Reichman and P. Charbonneau, J. Stat. Mech.

P05013 (2005).

[3] B. Kim and K. Kawasaki, J. Stat. Mech. P02004 (2008)

[4] T.V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 (1979).

[5] Y. Singh et al., Phys. Rev. Lett. 54, 1059 (1985); C. Dasgupta, Europhys. Lett. 20, 131 (1992).

[6] D.S. Dean, J. Phys. A: Math. Gen. 29 L619 (1996); for Eq. (2) without noise see B. Bagchi,

Physica A 145, 273 (1987).

[7] A. Velenich et al., J. Phys. A: Math. Theor. 41, 235002 (2008); arXiv:0802.3212.

3


