Search Results


A New Approach to the Classical-Quantum Correspondence

Quantum eigenstates from classical Gibbs distributions Authors: Pieter W. Claeys and Anatoli Polkovnikov arXiv:2007.07264 Recommended with a commentary by Daniel Arovas, University of California, San Diego |View Commentary (pdf)| This commentary may be cited as: DOI: 10.36471/JCCM_October_2020_01 https://doi.org/10.36471/JCCM_October_2020_01

Experimental and Theoretical Developments in Dirty Bosons

1) Phase diagram of the disordered Bose-Hubbard model Authors: V. Gurarie, L. Pollet, N. V. Prokofev, B. V. Svistunov and M. Troyer, Arxiv:0909.4593 2) Superfluid-insulator transition of disordered bosons in one-dimension Authors: E. Altman, Y. Kafri, A. Polkovnikov and G. Refael, Arxiv:0909.4096. 3) Disordered insulator in an optical lattice Authors: M. Pasienski, D. McKay, M. […]

Quenching quantum many-body systems: fundamental relations between work distribution and dephasing.

1. The Statistics of the Work Done on a Quantum Critical System by Quenching a Control Parameter Author: Alessandro Silva arXiv:0806.4301; Phys. Rev. Lett. 101, 120603 (2008) and 2. On quenches in quantum many-body systems: the one-dimensional Bose-Hubbard model revisited Author: Guillaume Roux arXiv:0810.3720 Recommended with a Commentary by Anatoly Polkovnikov, Boston University   | View […]

Correspondents prior to last two years

Elihu Abrahams, Rutgers University | View Contributions | Vivek Aji, University of California, Riverside |  View Contributions | Jason Alicea, California Institute of Technology | View Contributions | Ehud Altman, UC Berkeley | View Contributions | Philip Anderson, Princeton University, Princeton | View Contributions | Arezoo M. Ardekani, University of Notre Dame | View Contributions | Leon […]

1. Universal adiabatic dynamics across a quantum critical point / 2. Dynamics of a Quantum Phase Transition

1. Universal adiabatic dynamics across a quantum critical point Authors:  Anatoli Polkovnikov http://ArXiv.org/cond-mat/0312144 2. Dynamics of a Quantum Phase Transition Authors: Wojciech H. Zurek, Uwe Dorner, and Peter Zoller http://ArXiv.org/cond-mat/0503511 Recommended and Commentary by Subir Sachdev, Harvard University. | View Commentary (pdf) | (JCCM_Jun05_03)

google

google