Towards a Practical Resistance Standard

Quantum anomalous Hall effect with a permanent magnet defines a quantum resistance standard
Authors: Yuma Okazaki, Takehiko Oe, Minoru Kawamura, Ryutaro Yoshimi, Shuji Nakamura, Shintaro Takada, Masataka Mogi, Kei S. Takahashi, Atsushi Tsukazaki, Masashi Kawasaki, Yoshinori Tokura, and Nobu-Hisa Kaneko
Nature Physics 18, 25-29 (2022); DOI: 10.1038/s41567-021-01424-8

Recommended with a commentary by Joe Checkelsky, Massachusetts Institute of Technology
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_March_2022_01
https://doi.org/10.36471/JCCM_March_2022_01

Maximizing space efficiency without order, analytically

Explicit Analytical Solution for Random Close Paking in d = 2 and d = 3
Authors: Alessio Zaccone
Physical Review Letters 128, 028002 (2022); DOI: 10.1103/PhysRevLett.128.028002

Recommended with a commentary by Christos Likos, University of Vienna
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_March_2022_02
https://doi.org/10.36471/JCCM_March_2022_02

Flux Quantization Cubed

Discovery of charge-4e and charge-6e superconductivity in kagome superconductor CsV3Sb5
Authors: Jun Ge, Pinyuan Wang, Ying Xing, Qiangwei Yin, Hechang Lei, Ziqiang Wang, and Jian Wang
arXiv:2201.10352; DOI: 10.48550/arXiv.2201.10352

Recommended with a commentary by Chandra Varma, University of California, Berkeley – Visitor
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_March_2022_03
https://doi.org/10.36471/JCCM_March_2022_03

A little frustration to sharpen the metamaterial

Non-orientable order and non-Abelian response in frustrated metamaterials
Authors: Xiaofei Guo, Marcelo Guzman, David Carpentier, Denis Bartolo, and Corentin Coulais
arXiv:2111.13933

Recommended with a commentary by Anton Souslov, University of Bath
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_February_2022_01
https://doi.org/10.36471/JCCM_February_2022_01

Tractable Transport Calculations through Artificial Dissipation

1. Dissipation-assisted operator evolution method for capturing hydrodynamic transport
Authors: Tibor Rakovszky, C. W. von Keyserlingk, and Frank Pollmann
Phys. Rev. B 105, 075131 (2022); DOI: 10.1103/PhysRevB.105.075131

2. Operator backflow and the classical simulation of quantum transport
Authors: C. W. von Keyserlingk, Frank Pollmann, and Tibor Rakovszky
arXiv:2111.09904

Recommended with a commentary by E. Miles Stoudenmire, Flatiron Institute
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_February_2022_02
https://doi.org/10.36471/JCCM_February_2022_02

A better large N limit of the electron-boson
problem?

Large N Theory of Critical Fermi Surfaces
Authors: I. Esterlis, H. Guo, A. A. Patel, and S. Sachdev
Phys. Rev. B 103, 235129 (2021); DOI: 10.1103/PhysRevB.103.235129

Recommended with a commentary by Steven A. Kivelson, Stanford University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_February_2022_03
https://doi.org/10.36471/JCCM_February_2022_03

How repulsive can a pairing interaction be?

Quantum phase transition in a clean superconductor with repulsive dynamical interaction
Authors: Dimitri Pimenov and Andrey V. Chubukov
arXiv:2112.06273

Recommended with a commentary by Jörg Schmalian, Karlsruhe Institute of Technology
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_January_2022_01
https://doi.org/10.36471/JCCM_January_2022_01

Liquid metal batteries and their magnetohydrodynamic instabilities

1. Metal pad instabilities in liquid metal batteries
Authors: Oleg Zikanov
Phys. Rev. E 92, 063021 (2015); DOI: 10.1103/PhysRevE.92.063021

2. Fluid Mechanics of Liquid Metal Batteries
Authors: Douglas H. Kelley and Tom Weier
Appl. Mech. Rev. 70(2): 020801 (2018); DOI: 10.1115/1.4038699

Recommended with a commentary by Brian Skinner, Ohio State University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_January_2022_02
https://doi.org/10.36471/JCCM_January_2022_02

Unraveling entanglement

Crazing Reveals an Entanglement Network in Glassy Ring Polymers
Authors: Jiuling Wang and Ting Ge
Macromolecules, 54, 16, 7500–7511, (2021); DOI: 10.1021/acs.macromol.1c01080

Recommended with a commentary by Jan Smrek, University of Vienna
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_January_2022_03
https://doi.org/10.36471/JCCM_January_2022_03

Observation of KPZ super-diffusion in Heisenberg chain

Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion
Authors: David Wei, Antonio Rubio-Abadal, Bingtian Ye, Francisco Machado, Jack Kemp, Kritsana Srakaew, Simon Hollerith, Jun Rui, Sarang Gopalakrishnan, Norman Y. Yao, Immanuel Bloch, and Johannes Zeiher
arXiv:2107.00038

Recommended with a commentary by Tin-Lun Ho, The Ohio State University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_December_2021_01
https://doi.org/10.36471/JCCM_December_2021_01

New transport experiments in strange metals

1. Quantum-critical continuum in magic-angle twisted bilayer graphene
Authors: Alexandre Jaoui, Ipsita Das, Giorgio Di Battista, Jaime Díez-Mérida, Xiaobo Lu, Kenji Watanabe, Takashi Taniguchi, Hiroaki Ishizuka, Leonid Levitov, and Dmitri K. Efetov
arXiv:2108.07753

2. Incoherent transport across the strange metal regime of highly overdoped cuprates
Authors: J. Ayres, M. Berben, M. Čulo, Y.-T. Hsu, E. van Heumen, Y. Huang, J. Zaanen, T. Kondo, T. Takeuchi, J. R. Cooper, C. Putzke, S. Friedemann, A. Carrington, and N. E. Hussey
Nature, vol. 595, 661-666 (2021); DOI: 10.1038/s41586-021-03622-z
arXiv:2012.01208

3. Linear-in temperature resistivity from an isotropic Planckian scattering rate
Authors: Gaël Grissonnanche, Yawen Fang, Anaëlle Legros, Simon Verret, Francis Laliberté, Clément Collignon, Jianshi Zhou, David Graf, Paul A. Goddard, Louis Taillefer, and B. J. Ramshaw
Nature 595, 667-672 (2021); DOI: 10.1038/s41586-021-03697-8
arXiv:2011.13054

Recommended with a commentary by T. Senthil, Massachusetts Institute of Technology
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_December_2021_02
https://doi.org/10.36471/JCCM_December_2021_02

Superconductivity and other phases in graphene multilayers, without twists

1. Isospin magnetism and spin-triplet superconductivity in Bernal bilayer graphene
Authors: Haoxin Zhou, Yu Saito, Liam Cohen, William Huynh, Caitlin L. Patterson, Fangyuan Yang, Takashi Taniguchi, Kenji Watanabe, and Andrea F. Young
arXiv:2110.11317

2. Superconductivity in rhombohedral trilayer graphene
Authors: Haoxin Zhou, Tian Xie, Takashi Taniguchi, Kenji Watanabe, and Andrea F. Young
Nature 598, 434–438 (2021); DOI: 10.1038/s41586-021-03926-0
arXiv:2106.07640

3. Cascade of isospin phase transitions in Bernal bilayer graphene at zero magnetic field
Authors: Sergio C. de la Barrera, Samuel Aronson, Zhiren Zheng, Kenji Watanabe, Takashi Taniguchi, Qiong Ma, Pablo Jarillo-Herrero, and Raymond Ashoori
arXiv:2110.13907

4. Quantum cascade of new correlated phases in trigonally warped bilayer graphene
Authors: Anna M. Seiler, Fabian R. Geisenhof, Felix Winterer, Kenji Watanabe, Takashi Taniguchi, Tianyi Xu, Fan Zhang, and R. Thomas Weitz
arXiv:2111.06413

Recommended with a commentary by Francisco Guinea, Imdea Nanoscience, Madrid and Donostia International Physics Center, San Sebastian
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_November_2021_01
https://doi.org/10.36471/JCCM_November_2021_01

Quantized (or not quantized) thermal Hall effect and oscillations in the thermal conductivity in the Kitaev spin liquid candidate α-RuCl3

1. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3
Authors: Peter Czajka, Tong Gao, Max Hirschberger, Paula Lampen-Kelley, Arnab Banerjee, Jiaqiang Yan, David G. Mandrus, Stephen E. Nagler, and N. P. Ong
Nature Physics 17, 915–919 (2021); DOI: 10.1038/s41567-021-01243-x

2. The planar thermal Hall conductivity in α-RuCl3
Authors: Peter Czajka, Tong Gao, Max Hirschberger, Paula Lampen-Kelley, Arnab Banerjee, Nicholas Quirk, David G. Mandrus, Stephen E. Nagler, and N. P. Ong
arXiv:2111.0xxxx (to appear)

3. Robustness of the thermal Hall effect close to half-quantization in a field-induced spin liquid state
Authors: J.A.N. Bruin, R.R. Claus, Y. Matsumoto, N. Kurita, H. Tanaka, and H. Takagi
arXiv:2104.12184

4. Evidence of a Phonon Hall Effect in the Kitaev Spin Liquid Candidate α-RuCl3
Authors: É. Lefrançois, G. Grissonnanche, J. Baglo, P. Lampen-Kelley, J. Yan, C. Balz, D. Mandrus, S. E. Nagler, S. Kim, Young-June Kim, N. Doiron-Leyraud, and L. Taillefer
arXiv:2111.05493

5. Sign Structure of Thermal Hall Conductivity and Topological Magnons for In-Plane Field Polarized Kitaev Magnets
Authors: Li Ern Chern , Emily Z. Zhang , and Yong Baek Kim
Physical Review Letters 126, 147201 (2021); DOI: 10.1103/PhysRevLett.126.147201

6. Pseudoscalar U(1) spin liquids in α-RuCl3
Authors: Inti Sodemann Villadiego
arXiv:2106.05290

Recommended with a commentary by Patrick A. Lee, MIT
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_November_2021_02
https://doi.org/10.36471/JCCM_November_2021_02

Activity-driven topological glass

1. Active topological glass
Authors: Jan Smrek, Iurii Chubak, Christos N. Likos, and Kurt Kremer
Nature Communications, 11: 26, 2020; DOI: 10.1038/s41467-019-13696-z

2. Emergence of active topological glass through directed chain dynamics and nonequilibrium phase separation
Authors: Iurii Chubak, Christos N. Likos, Kurt Kremer, and Jan Smrek
Physical Review Research, 2: 043249, 2020; DOI: 10.1103/PhysRevResearch.2.043249

Recommended with a commentary by Dimitris Vlassopoulos, University of Crete and Institute of Electronic Structure & Laser, FORTH
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_November_2021_03
https://doi.org/10.36471/JCCM_November_2021_03

Time Crystals at Last?

1. Observation of Time-Crystalline Eigenstate Order on a Quantum Processor
Authors: Google Quantum AI and collaborators
arXiv:2107.13571

2. Observation of a many-body-localized discrete time crystal with a programmable spin-based quantum simulator
Authors: J. Randall, C. E. Bradley, F. V. van der Gronden, A. Galicia, M. H. Abobeih, M. Markham, D. J. Twitchen, F. Machado, N. Y. Yao, and T. H. Taminiau
arXiv:2107.00736

3. Phase Structure of Driven Quantum Systems
Authors: V. Khemani, A. Lazarides, R. Moessner, and S. L. Sondhi
Phys. Rev. Lett., 116, 250401 (2016); DOI: 10.1103/PhysRevLett.116.250401
arXiv:1508.03344

Recommended with a commentary by Daniel Arovas, University of California, San Diego
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_October_2021_01
https://doi.org/10.36471/JCCM_October_2021_01

How to measure the Euler characteristic of the Fermi sea

Quantized Nonlinear Conductance in Ballistic Metals
Authors: C. L. Kane
arXiv:2108.05870

Recommended with a commentary by Carlo Beenakker, Instituut-Lorentz, Leiden University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_October_2021_02
https://doi.org/10.36471/JCCM_October_2021_02

Oddities of Active Systems

Odd Diffusivity of Chiral Random Motion
Authors: Cory Hargus, Jeffrey M. Epstein, and Kranthi K. Mandadapu
Phys. Rev. Lett. 127, 178001 (2021); DOI: 10.1103/PhysRevLett.127.178001
arXiv:2103.09958

Recommended with a commentary by Alexander Y. Grosberg, New York University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_October_2021_03
https://doi.org/10.36471/JCCM_October_2021_03

Extending superconducting qubit lifetimes: What’s Next?

1. Millisecond coherence in a superconducting qubit
Authors: Aaron Somoroff, Quentin Ficheux, Raymond A. Mencia, Haonan Xiong, Roman V. Kuzmin, and Vladimir E. Manucharyan
arXiv:2103.08578

2. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
Authors: Alexander P. M. Place, Lila V. H. Rodgers, Pranav Mundada, Basil M. Smitham, Mattias Fitzpatrick, Zhaoqi Leng, Anjali Premkumar, Jacob Bryon, Andrei Vrajitoarea, Sara Sussman, Guangming Cheng, Trisha Madhavan, Harshvardhan K. Babla, Xuan Hoang Le, Youqi Gang, Berthold Jäck, András Gyenis, Nan Yao, Robert J. Cava, Nathalie P. de Leon, and Andrew A. Houck
Nature Communications 12, 1779 (2021); DOI: 10.1038/s41467-021-22030-5
arXiv:2003.00024

3. Protecting a bosonic qubit with autonomous quantum error correction
Authors: Jeffrey M. Gertler, Brian Baker, Juliang Li, Shruti Shirol, Jens Koch, and Chen Wang
Nature 590, 243-248 (2021); DOI: 10.1038/s41586-021-03257-0
arXiv:2004.09322

Recommended with a commentary by Steven M. Girvin, Yale University
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_September_2021_01
https://doi.org/10.36471/JCCM_September_2021_01

Some bacteria more than sum of parts

Gut bacterial aggregates as living gels
Authors: Brandon H. Schlomann, and Raghuveer Parthasarathy
eLife 2021;10:e71105; DOI: 10.7554/eLife.71105

Recommended with a commentary by Srividya Iyer-Biswas, Purdue University and Santa Fe Institute
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_September_2021_02
https://doi.org/10.36471/JCCM_September_2021_02

Moiré bands in transitional metal dichalcogenides: continuous Mott transition, quantum anomalous Hall and more

1. Quantum criticality in twisted transition metal dichalcogenides
Authors: Augusto Ghiotto, En-Min Shih, Giancarlo S. S. G. Pereira, Daniel A. Rhodes, Bumho Kim, Jiawei Zang, Andrew J. Millis, Kenji Watanabe, Takashi Taniguchi, James C. Hone, Lei Wang, Cory R. Dean, and Abhay N. Pasupathy
Nature 597, 345–349 (2021); DOI: 10.1038/s41586-021-03815-6
arXiv:2103.09796

2. Continuous Mott transition in semiconductor moiré superlattices
Authors: Tingxin Li, Shengwei Jiang, Lizhong Li, Yang Zhang, Kaifei Kang, Jiacheng Zhu, Kenji Watanabe, Takashi Taniguchi, Debanjan Chowdhury, Liang Fu, Jie Shan, and Kin Fai Mak
Nature 597, 350–354 (2021); DOI: 10.1038/s41586-021-03853-0
arXiv:2103.09779

3. Quantum anomalous Hall effect from intertwined moiré bands
Authors: Tingxin Li, Shengwei Jiang, Bowen Shen, Yang Zhang, Lizhong Li, Trithep Devakul, Kenji Watanabe, Takashi Taniguchi, Liang Fu, Jie Shan, and Kin Fai Mak
arXiv:2107.01796

Recommended with a commentary by Patrick A. Lee, MIT
|View Commentary (pdf)|

This commentary may be cited as:
DOI: 10.36471/JCCM_September_2021_03
https://doi.org/10.36471/JCCM_September_2021_03

google

google